CONFIDENTIAL

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2014 SESSION

SUBJECT CODE	:	FEB23023
SUBJECT TITLE	:	ELECTROMAGNETISM
LEVEL	:	BACHELOR
TIME / DURATION	:	2.00 PM – 5.00 PM (3.0 HOURS)
DATE	:	11 JANUARY 2015

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
- 6. Answer all questions in English.
- 7. Do not open the question paper until instructed to do so

THERE ARE 4 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIX.

SECTION A(Total: 40marks)

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.

Question1

In Cartesian coordinates, vector **A** is directed from (1, -1, -3) and ends at point (2, -1, 0). Vector **B** is directed from (4, -2, 1) to point (-1, 3, 2). Determine:

(a)	The magnitude, A and unit vector, \mathbf{a}	(4 marks)
(b)	Vector B	(2 marks)
(c)	The angle between vectors A and B , θ_{AB}	(4 marks)
(d)	A vector C whosemagnitude is 8 and whosedirection is perpendicular	(- -)
	to both vectors A and B	(6 marks)
(e)	$(\mathbf{A} \times \mathbf{y}) \cdot \mathbf{z}$	(4 marks)

Question 2

(a) Find the directional derivative of $T = 2x^2 - 5y^2z$ along direction $\mathbf{l} = \mathbf{x}3 + \mathbf{y}2 - \mathbf{z}4$ and evaluate it at (2, -1, 3) (10 marks)

(b) Determine the divergence of the vector field $\mathbf{E} = \mathbf{x}3x^2 + \mathbf{y}2z + \mathbf{z}y^2z$ at (-2, 1, 3) (5 marks)

(c) Find the Laplacian of the scalar function $V = -3x^2y + 5y^3z$

(5 marks)

SECTION B(Total:60marks)

INSTRUCTION: Answer THREE (3) questions only. Please use the answer booklet provided.

Question 3

- (a) A circular cylinder of radius r = 5 cm is concentric with the z-axis and extends between z = -3 cm and z = 3 cm. Determine the cylinder's volume. (5 marks)
- (b) The spherical strip shown in Figure 1 below is a section of a sphere of radius 3 cm.Find the area of the strip. (5 marks)

Figure 1

(c) Transform the vector $\mathbf{A} = \mathbf{y} \ x^2 + y^2 + z^2 - \mathbf{z}(x^2 + y^2)$ into spherical coordinates and evaluate it at (-1, 1, 2). (10 marks)

SEPTEMBER 2014

CONFIDENTIAL

Question 4

- (a) Find the total charge contained in a cylindrical volume defined by $r \le 2 m$ and $0 \le z \le 3 mif \rho_v = 20 rz (mC/m^3)$ (6 marks)
- (b) Three point charges, each with q = 3 nC, are located at the corners of a triangle in the x-y plane, with one corner at the origin, another at (2 cm, 0, 0) and the third at (0, 2 cm, 0). Calculate the force acting on the charge located at the origin. Take $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m (14 marks)

Question 5

- (a) State Biot-Savart Law (2 marks)
- (b) Two parallel, circular loops carrying a current, I = 20 A, each are arranged as shown in **Figure 2** below. The first loop is situated in the x-y plane with its center at the origin andthe second loop's center is at z = 2 m. If the two loops have the same radius a = 3 m, determine the magnetic field, **H** at:

(i)
$$z = 0$$
 (6 marks)

(ii) z = 1 m

(iii) z = 2 m

(6 marks)

(6 marks)

Figure 2

CONFIDENTIAL

Question 6

(a) Define Lenz's Law (2 marks)

- (b) An inductor is formed by winding, N = 10 turns of a thin conducting wire into a circular loop of radius, a = 10 cm. The inductor loop is in the x-y plane with its center at the origin, and connected to a resistor, R = 1 k Ω as shown in **Figure 3** below. In the presence of a magnetic field, **B** = 0.2 y2 + z3 sin 1000*t*, determine:
 - (i) The magnetic flux linking a single turn of the inductor, ϕ (6 marks)
 - (ii) The transformer emf, V_{emf}^{tr} (5 marks)
 - (iii) The polarity of V_{emf}^{tr} at t = 0 (3 marks)
 - (iv) The induced current in the circuit (4 marks)

Figure 3

END OF QUESTION PAPER

APPENDIX

able 1. Summary of ve	Cartesian	Cylindrical	Spherical
	Coordinates	Coordinates	Coordinates
Coordinate variables	<i>x</i> , <i>y</i> , <i>z</i>	r, ϕ, z	$R, heta, \phi$
Vector representation A =	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{r}}A_r + \hat{\mathbf{\phi}}A_\phi + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{R}}A_R + \hat{\mathbf{\Theta}}A_\theta + \hat{\mathbf{\phi}}A_\phi$
Magnitude of A A =	$\sqrt[+]{A_x^2 + A_y^2 + A_z^2}$	$\sqrt[+]{A_r^2 + A_\phi^2 + A_z^2}$	$\sqrt[+]{A_R^2 + A_\theta^2 + A_\phi^2}$
Position vector $\overrightarrow{OP_1} =$	$\hat{\mathbf{x}}x_1 + \hat{\mathbf{y}}y_1 + \hat{\mathbf{z}}z_1,$	$\hat{\mathbf{r}}r_1 + \hat{\mathbf{z}}z_1,$	$\hat{\mathbf{R}}R_1$,
	for $P = (x_1, y_1, z_1)$	for $P = (r_1, \phi_1, z_1)$	for $P = (R_1, \theta_1, \phi_1)$
Base vectors properties	$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$	$\hat{\mathbf{r}}\cdot\hat{\mathbf{r}}=\hat{\mathbf{\phi}}\cdot\hat{\mathbf{\phi}}=\hat{\mathbf{z}}\cdot\hat{\mathbf{z}}=1$	$\hat{\mathbf{R}}\cdot\hat{\mathbf{R}}=\hat{\boldsymbol{\theta}}\cdot\hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}}\cdot\hat{\boldsymbol{\phi}}=1$
	$\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0$	$\hat{\mathbf{r}}\cdot\hat{\mathbf{\phi}}=\hat{\mathbf{\phi}}\cdot\hat{\mathbf{z}}=\hat{\mathbf{z}}\cdot\hat{\mathbf{r}}=0$	$\hat{\mathbf{R}}\cdot\hat{\mathbf{\theta}}=\hat{\mathbf{\theta}}\cdot\hat{\mathbf{\phi}}=\hat{\mathbf{\phi}}\cdot\hat{\mathbf{R}}=0$
	$\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$	$\hat{\mathbf{r}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{z}}$	$\hat{\mathbf{R}} \times \hat{\mathbf{\Theta}} = \hat{\mathbf{\phi}}$
	$\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$	$\hat{\mathbf{\phi}} \mathbf{x} \hat{\mathbf{z}} = \hat{\mathbf{r}}$	$\hat{\mathbf{ heta}} imes \hat{\mathbf{ heta}} = \hat{\mathbf{R}}$
	$\hat{z} \times \hat{x} = \hat{y}$	$\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\mathbf{\phi}}$	$\hat{\mathbf{\phi}} \mathbf{x} \hat{\mathbf{R}} = \hat{\mathbf{\theta}}$
Dot product $\mathbf{A} \cdot \mathbf{B} =$	$A_X B_X + A_Y B_Y + A_Z B_Z$	$A_r B_r + A_\phi B_\phi + A_z B_z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product A × B =	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\boldsymbol{z}} \\ A_r & A_{\phi} & A_z \\ B_r & B_{\phi} & B_z \end{vmatrix}$	$ \begin{array}{c cc} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \\ A_R & A_\theta & A_\phi \\ B_R & B_\theta & B_\phi \end{array} $
Differential length $d\mathbf{l} =$	$\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$	$\hat{\mathbf{r}} dr + \hat{\mathbf{\phi}} r d\phi + \hat{\mathbf{z}} dz$	$\hat{\mathbf{R}} dR + \hat{\mathbf{\Theta}} R d\theta + \hat{\mathbf{\phi}} R \sin \theta d\phi$
Differential surface areas	$d\mathbf{s}_x = \hat{\mathbf{x}} dy dz$	$d\mathbf{s}_r = \hat{\mathbf{r}}r \ d\phi \ dz$	$d\mathbf{s}_R = \hat{\mathbf{R}}R^2 \sin\theta \ d\theta \ d\phi$
	$d\mathbf{s}_y = \hat{\mathbf{y}} dx dz$	$d\mathbf{s}_{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} dr dz$	$d\mathbf{s}_{\theta} = \hat{\mathbf{\theta}} R \sin \theta \ dR \ d\phi$
	$d\mathbf{s}_{z} = \hat{\mathbf{z}} dx dy$	$d\mathbf{s}_{z} = \hat{\mathbf{z}}r \ dr \ d\phi$	$d\mathbf{s}_{\phi} = \hat{\mathbf{\phi}} R \ dR \ d\theta$
Differential volume $dV =$	dx dy dz	r dr dø dz	$R^2 \sin \theta \ dR \ d\theta \ d\phi$

Table 1: Summary of vector relations

Table 2: Coordinate transformation relations
--

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$r = \sqrt[4]{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ z = z	$\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_r = A_x \cos \phi + A_y \sin \phi$ $A_{\phi} = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$
Cylindrical to Cartesian	$x = r \cos \phi$ $y = r \sin \phi$ z = z	$\hat{\mathbf{x}} = \hat{\mathbf{r}}\cos\phi - \hat{\mathbf{\phi}}\sin\phi$ $\hat{\mathbf{y}} = \hat{\mathbf{r}}\sin\phi + \hat{\mathbf{\phi}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to spherical	$R = \sqrt[+]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}[\sqrt[+]{x^2 + y^2}/z]$ $\phi = \tan^{-1}(y/x)$	$\hat{\mathbf{R}} = \hat{\mathbf{x}} \sin \theta \cos \phi$ + $\hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{x}} \cos \theta \cos \phi$ + $\hat{\mathbf{y}} \cos \theta \sin \phi - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi$	$A_{R} = A_{x} \sin \theta \cos \phi$ + $A_{y} \sin \theta \sin \phi + A_{z} \cos \theta$ $A_{\theta} = A_{x} \cos \theta \cos \phi$ + $A_{y} \cos \theta \sin \phi - A_{z} \sin \theta$ $A_{\phi} = -A_{x} \sin \phi + A_{y} \cos \phi$
Spherical to Cartesian	$x = R \sin \theta \cos \phi$ $y = R \sin \theta \sin \phi$ $z = R \cos \theta$	$\hat{\mathbf{x}} = \hat{\mathbf{R}} \sin \theta \cos \phi$ $+ \hat{\mathbf{\theta}} \cos \theta \cos \phi - \hat{\mathbf{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi$ $+ \hat{\mathbf{\theta}} \cos \theta \sin \phi + \hat{\mathbf{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$	$A_x = A_R \sin \theta \cos \phi$ + $A_\theta \cos \theta \cos \phi - A_\phi \sin \phi$ $A_y = A_R \sin \theta \sin \phi$ + $A_\theta \cos \theta \sin \phi + A_\phi \cos \phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$
Cylindrical to spherical	$R = \sqrt[+]{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{\mathbf{R}} = \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$	$A_R = A_r \sin \theta + A_z \cos \theta$ $A_\theta = A_r \cos \theta - A_z \sin \theta$ $A_\phi = A_\phi$
Spherical to cylindrical	$r = R \sin \theta$ $\phi = \phi$ $z = R \cos \theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}}\sin\theta + \hat{\mathbf{\theta}}\cos\theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\mathbf{\theta}}\sin\theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$

FORMULA

Vector analysis

Gradient of a scalar T: $\nabla T = \text{grad } T = \hat{\mathbf{x}} \frac{\partial T}{\partial x} + \hat{\mathbf{y}} \frac{\partial T}{\partial y} + \hat{\mathbf{z}} \frac{\partial T}{\partial z}$ Directional derivative of T along al: $\frac{dT}{dl} = \nabla T \cdot \hat{\mathbf{a}}_l.$ Divergence of a vector **E**: $\nabla \cdot \mathbf{E} = \text{div } \mathbf{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$ Laplacian of a scalar V: $\nabla^2 V = \nabla \cdot (\nabla V) = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}.$

Electrostatics

Charge distributions: $Q = \int_{l} \rho_{l} dl$ $Q = \int_{s} \rho_{s} ds$ $Q = \int_{V} \rho_{v} dV \qquad (C)$

Electric field due to multiple charges:

$$\mathbf{E} = \frac{1}{4\pi\varepsilon} \sum_{i=1}^{N} \frac{q_i (\mathbf{R} - \mathbf{R}_i)}{|\mathbf{R} - \mathbf{R}_i|^3} \qquad (V/m).$$
$$\varepsilon_0 = 8.85 \times 10^{-12} \simeq (1/36\pi) \times 10^{-9} \qquad (F/m)$$

Magnetostatics

Magnetic field of a loop, H: $\mathbf{H} = \hat{\mathbf{z}} \frac{Ia^2}{2|z|^3} \qquad (\text{at } |z| \gg a)$ $\mathbf{H} = \hat{\mathbf{z}} \frac{Ia^2}{2(a^2 + z^2)^{3/2}} \qquad (A/m).$ at (0, 0, z) with a > z $\mathbf{H} = \hat{\mathbf{z}} \frac{I}{2a} \qquad (\text{at } z = 0).$

Maxwell's equation for time-varying field

Magnetic flux: $\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{s} \quad \text{(Wb)}$

Transformer emf:

$$V_{\rm emf}^{\rm tr} = -N \ \frac{d\Phi}{dt} \qquad (V)$$

7