UNIVERSITI KUALA LUMPUR

Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2014 SESSION

SUBJECT CODE	$:$ FEB23023
SUBJECT TITLE	$:$ ELECTROMAGNETISM
LEVEL	$:$ BACHELOR
TIME / DURATION	$:$(3.00 PM - 5.00 PM DATE
	$: 11$ JANUARY 2015

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
6. Answer all questions in English.
7. Do not open the question paper until instructed to do so

SECTION A(Total: 40marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question1

In Cartesian coordinates, vector \mathbf{A} is directed from (1, -1, -3) and ends at point (2, -1, 0). Vector \mathbf{B} is directed from $(4,-2,1)$ to point $(-1,3,2)$. Determine:
(a) The magnitude, A and unit vector, a
(b) Vector \mathbf{B}
(c) The angle between vectors \mathbf{A} and $\mathbf{B}, \theta_{A B}$
(d) A vector Cwhosemagnitude is 8 and whosedirection is perpendicular to both vectors \mathbf{A} and \mathbf{B}
(e) $(\mathbf{A} \times \boldsymbol{y}) \cdot \mathbf{z}$

Question 2

(a) Find the directional derivative of $T=2 x^{2}-5 y^{2} z$ along direction $\mathbf{I}=\mathbf{x} 3+\mathbf{y} 2-\mathbf{z} 4$ and evaluate it at (2, $-1,3$)
(10 marks)
(b) Determine the divergence of the vector field $\mathbf{E}=\mathbf{x} 3 x^{2}+\mathbf{y} 2 z+\mathbf{z} y^{2} z$ at $(-2,1,3)$
(5 marks)
(c) Find the Laplacian of the scalar function $V=-3 x^{2} y+5 y^{3} z$

SECTION B(Total:60marks)

INSTRUCTION: Answer THREE (3) questions only.

Please use the answer booklet provided.

Question 3

(a) A circular cylinder of radius $\mathrm{r}=5 \mathrm{~cm}$ is concentric with the z -axis and extends between $z=-3 \mathrm{~cm}$ and $\mathrm{z}=3 \mathrm{~cm}$. Determine the cylinder's volume. (5 marks)
(b) The spherical strip shown in Figure 1 below is a section of a sphere of radius 3 cm . Find the area of the strip.

Figure 1
(c) Transform the vector $\mathbf{A}=\mathbf{y} x^{2}+y^{2}+z^{2}-\mathbf{z}\left(x^{2}+y^{2}\right)$ into spherical coordinates and evaluate it at $(-1,1,2)$.
(10 marks)

Question 4

(a) Find the total charge contained in a cylindrical volume defined by $r \leq 2 \mathrm{~m}$ and $0 \leq z \leq 3$ mif $_{\mathrm{v}}=20 \mathrm{rz}\left(\mathrm{mC} / \mathrm{m}^{3}\right)$
(b) Three point charges, each with $\mathrm{q}=3 \mathrm{nC}$, are located at the corners of a triangle in the $x-y$ plane, with one corner at the origin, another at $(2 \mathrm{~cm}, 0,0)$ and the third at $(0,2 \mathrm{~cm}, 0)$. Calculate the force acting on the charge located at the origin.
Take $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$

Question 5

(a) State Biot-Savart Law
(b) Two parallel, circular loops carrying a current, $I=20 \mathrm{~A}$, each are arranged as shown in Figure 2 below. The first loop is situated in the $x-y$ plane with its center at the origin andthe second loop's center is at $z=2 \mathrm{~m}$. If the two loops have the same radius $\mathrm{a}=3 \mathrm{~m}$, determine the magnetic field, \mathbf{H} at:
(i) $\mathrm{z}=0$
(ii) $\mathrm{z}=1 \mathrm{~m}$
(iii) $z=2 m$

Figure 2

Question 6

(a) Define Lenz's Law
(b) An inductor is formed by winding, $N=10$ turns of a thin conducting wire into a circular loop of radius, $\mathrm{a}=10 \mathrm{~cm}$. The inductor loop is in the $\mathrm{x}-\mathrm{y}$ plane with its center at the origin, and connected to a resistor, $R=1 \mathrm{k} \Omega$ as shown in Figure 3 below. In the presence of a magnetic field, $\mathbf{B}=0.2 \mathbf{y} 2+\mathbf{z} 3 \sin 1000 t$, determine:
(i) The magnetic flux linking a single turn of the inductor, ϕ
(ii) The transformer emf, $V_{e m f}^{t r}$
(iii) The polarity of $V_{e m f}^{t r}$ at $t=0$
(3 marks)
(iv) The induced current in the circuit

Figure 3

APPENDIX

Table 1: Summary of vector relations

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	x, y, z	r, ϕ, z	R, θ, ϕ
Vector representation $\mathbf{A}=$	$\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{r}} A_{r}+\hat{\phi} A_{\phi}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{R}} A_{R}+\hat{\boldsymbol{\theta}} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}$
Magnitude of A $\quad\|\mathbf{A}\|=$	$\sqrt[+]{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$	$\sqrt[+]{A_{r}^{2}+A_{\phi}^{2}+A_{Z}^{2}}$	$\sqrt[+]{A_{R}^{2}+A_{\theta}^{2}+A_{\phi}^{2}}$
Position vector $\overrightarrow{O P_{1}}=$	$\begin{gathered} \hat{\mathbf{x}} x_{1}+\hat{\mathbf{y}} y_{1}+\hat{\mathbf{z}} z_{1} \\ \text { for } P=\left(x_{1}, y_{1}, z_{1}\right) \end{gathered}$	$\begin{gathered} \hat{\mathbf{r}} r_{1}+\hat{\mathbf{z}} z_{1}, \\ \text { for } P=\left(r_{1}, \phi_{1}, z_{1}\right) \end{gathered}$	$\hat{\mathbf{R}} R_{1},$ for $P=\left(R_{1}, \theta_{1}, \phi_{1}\right)$
Base vectors properties	$\begin{gathered} \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{x}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}=0 \\ \hat{\mathbf{x}} \times \hat{\mathbf{y}}=\hat{\mathbf{z}} \\ \hat{\mathbf{y}} \times \hat{\mathbf{z}}=\hat{\mathbf{x}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{x}}=\hat{\mathbf{y}} \end{gathered}$	$\begin{gathered} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}=\hat{\phi} \cdot \hat{\phi}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{r}} \cdot \hat{\phi}=\hat{\phi} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=0 \\ \hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{z}} \\ \hat{\phi} \times \hat{\mathbf{z}}=\hat{\mathbf{r}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{r}}=\hat{\boldsymbol{\phi}} \end{gathered}$	$\begin{gathered} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}}=\hat{\phi} \cdot \hat{\phi}=1 \\ \hat{\mathbf{R}} \cdot \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}}=0 \\ \hat{\mathbf{R}} \times \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{R}} \\ \hat{\phi} \times \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \end{gathered}$
Dot product $\mathbf{A} \cdot \mathbf{B}=$	$A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$	$A_{r} B_{r}+A_{\phi} B_{\phi}+A_{Z} B_{Z}$	$A_{R} B_{R}+A_{\theta} B_{\theta}+A_{\phi} B_{\phi}$
Cross product $\mathbf{A} \times \mathbf{B}=$	$\left\|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_{x} & A_{y} & A_{Z} \\ B_{x} & B_{y} & B_{Z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_{r} & A_{\phi} & A_{Z} \\ B_{r} & B_{\phi} & B_{Z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{R}} & \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\phi}} \\ A_{R} & A_{\theta} & A_{\phi} \\ B_{R} & B_{\theta} & B_{\phi}\end{array}\right\|$
Differential length $d \mathbf{l}=$	$\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z$	$\hat{\mathbf{r}} d r+\hat{\boldsymbol{\phi}} r d \phi+\hat{\mathbf{z}} d z$	$\hat{\mathbf{R}} d R+\hat{\boldsymbol{\theta}} R d \theta+\hat{\boldsymbol{\phi}} R \sin \theta d \phi$
Differential surface areas	$\begin{aligned} d \mathbf{s}_{x} & =\hat{\mathbf{x}} d y d z \\ d \mathbf{s}_{y} & =\hat{\mathbf{y}} d x d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} d x d y \end{aligned}$	$\begin{aligned} d \mathbf{s}_{r} & =\hat{\mathbf{r}} r d \phi d z \\ d \mathbf{s}_{\phi} & =\hat{\phi} d r d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} r d r d \phi \end{aligned}$	$\begin{aligned} d \mathbf{s}_{R} & =\hat{\mathbf{R}} R^{2} \sin \theta d \theta d \phi \\ d \mathbf{s}_{\theta} & =\hat{\boldsymbol{\theta}} R \sin \theta d R d \phi \\ d \mathbf{s}_{\phi} & =\hat{\boldsymbol{\phi}} R d R d \theta \end{aligned}$
Differential volume $d v=$	$d x d y d z$	$r d r d \phi d z$	$R^{2} \sin \theta d R d \theta d \phi$

Table 2: Coordinate transformation relations

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$\begin{aligned} & r=\sqrt[+]{x^{2}+y^{2}} \\ & \phi=\tan ^{-1}(y / x) \\ & z=z \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{x}} \cos \phi+\hat{\mathbf{y}} \sin \phi \\ & \hat{\phi}=-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$	$\begin{aligned} & A_{r}=A_{x} \cos \phi+A_{y} \sin \phi \\ & A_{\phi}=-A_{x} \sin \phi+A_{y} \cos \phi \\ & A_{z}=A_{z} \end{aligned}$
Cylindrical to Cartesian	$\begin{aligned} & x=r \cos \phi \\ & y=r \sin \phi \\ & z=z \end{aligned}$	$\begin{aligned} & \hat{\mathbf{x}}=\hat{\mathbf{r}} \cos \phi-\hat{\phi} \sin \phi \\ & \hat{\mathbf{y}}=\hat{\mathbf{r}} \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$	$\begin{aligned} & A_{x}=A_{r} \cos \phi-A_{\phi} \sin \phi \\ & A_{y}=A_{r} \sin \phi+A_{\phi} \cos \phi \\ & A_{z}=A_{z} \end{aligned}$
Cartesian to spherical	$\begin{aligned} & R=\sqrt[+]{x^{2}+y^{2}+z^{2}} \\ & \theta=\tan ^{-1}\left[\sqrt[+]{x^{2}+y^{2}} / z\right] \\ & \phi=\tan ^{-1}(y / x) \end{aligned}$	$\begin{aligned} \hat{\mathbf{R}}= & \hat{\mathbf{x}} \sin \theta \cos \phi \\ & +\hat{\mathbf{y}} \sin \theta \sin \phi+\hat{\mathbf{z}} \cos \theta \\ \hat{\boldsymbol{\theta}}= & \hat{\mathbf{x}} \cos \theta \cos \phi \\ & +\hat{\mathbf{y}} \cos \theta \sin \phi-\hat{\mathbf{z}} \sin \theta \\ \hat{\boldsymbol{\phi}}= & -\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \end{aligned}$	$\begin{aligned} A_{R}= & A_{x} \sin \theta \cos \phi \\ & +A_{y} \sin \theta \sin \phi+A_{z} \cos \theta \\ A_{\theta}= & A_{x} \cos \theta \cos \phi \\ & +A_{y} \cos \theta \sin \phi-A_{z} \sin \theta \\ A_{\phi}= & -A_{x} \sin \phi+A_{y} \cos \phi \end{aligned}$
Spherical to Cartesian	$\begin{aligned} & x=R \sin \theta \cos \phi \\ & y=R \sin \theta \sin \phi \\ & z=R \cos \theta \end{aligned}$	$\begin{aligned} \hat{\mathbf{x}}= & \hat{\mathbf{R}} \sin \theta \cos \phi \\ & \quad+\hat{\boldsymbol{\theta}} \cos \theta \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \\ \hat{\mathbf{y}}= & \hat{\mathbf{R}} \sin \theta \sin \phi \\ \quad & \quad+\hat{\boldsymbol{\theta}} \cos \theta \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\ \hat{\mathbf{z}}= & \hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$	$\begin{aligned} A_{x}= & A_{R} \sin \theta \cos \phi \\ & +A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi \\ A_{y}= & A_{R} \sin \theta \sin \phi \\ & +A_{\theta} \cos \theta \sin \phi+A_{\phi} \cos \phi \\ A_{z}= & A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$
Cylindrical to spherical	$\begin{aligned} & R=\sqrt[+]{r^{2}+z^{2}} \\ & \theta=\tan ^{-1}(r / z) \\ & \phi=\phi \end{aligned}$	$\begin{aligned} & \hat{\mathbf{R}}=\hat{\mathbf{r}} \sin \theta+\hat{\mathbf{z}} \cos \theta \\ & \hat{\boldsymbol{\theta}}=\hat{\mathbf{r}} \cos \theta-\hat{\mathbf{z}} \sin \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \end{aligned}$	$\begin{aligned} & A_{R}=A_{r} \sin \theta+A_{Z} \cos \theta \\ & A_{\theta}=A_{r} \cos \theta-A_{z} \sin \theta \\ & A_{\phi}=A_{\phi} \end{aligned}$
Spherical to cylindrical	$\begin{aligned} & r=R \sin \theta \\ & \phi=\phi \\ & z=R \cos \theta \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{R}} \sin \theta+\hat{\boldsymbol{\theta}} \cos \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \\ & \hat{\mathbf{z}}=\hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$	$\begin{aligned} & A_{r}=A_{R} \sin \theta+A_{\theta} \cos \theta \\ & A_{\phi}=A_{\phi} \\ & A_{z}=A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$

FORMULA

Vector analysis

Gradient of a scalar T:

$$
\nabla T=\operatorname{grad} T=\hat{\mathbf{x}} \frac{\partial T}{\partial x}+\hat{\mathbf{y}} \frac{\partial T}{\partial y}+\hat{\mathbf{z}} \frac{\partial T}{\partial z}
$$

Directional derivative of T along a:

$$
\frac{d T}{d l}=\nabla T \cdot \hat{\mathbf{a}}_{l} .
$$

Divergence of a vector \mathbf{E} :
$\nabla \cdot \mathbf{E}=\operatorname{div} \mathbf{E}=\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{Z}}{\partial z}$
Laplacian of a scalar V :

$$
\nabla^{2} V=\nabla \cdot(\nabla V)=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}
$$

Electrostatics
Charge distributions:

$$
\begin{align*}
& Q=\int_{L} \rho_{i} d l \\
& Q=\int_{S} \rho_{s} d s \\
& Q=\int_{V} \rho_{\mathrm{v}} d V \tag{C}
\end{align*}
$$

Electric field due to multiple charges:

$$
\mathbf{E}=\frac{1}{4 \pi \varepsilon} \sum_{i=1}^{N} \frac{q_{i}\left(\mathbf{R}-\mathbf{R}_{i}\right)}{\left|\mathbf{R}-\mathbf{R}_{i}\right|^{3}} \quad(\mathrm{~V} / \mathrm{m})
$$

$$
\begin{equation*}
\varepsilon_{0}=8.85 \times 10^{-12} \simeq(1 / 36 \pi) \times 10^{-9} \tag{F/m}
\end{equation*}
$$

Magnetostatics

Magnetic field of a loop, \mathbf{H} :

$$
\mathbf{H}=\hat{\mathbf{z}} \frac{I a^{2}}{2|z|^{3}} \quad(\text { at }|z| \gg a)
$$

$$
\mathbf{H}=\hat{\mathbf{z}} \frac{I a^{2}}{2\left(a^{2}+z^{2}\right)^{3 / 2}} \quad(\mathrm{~A} / \mathrm{m})
$$

$$
\text { at }(0,0, z) \text { with } a>z
$$

$\mathbf{H}=\hat{\mathbf{z}} \frac{I}{2 a} \quad($ at $z=0)$

Maxwell's equation for time-varying field

Magnetic flux:
$\Phi=\int_{S} \mathbf{B} \cdot d \mathbf{s} \quad(\mathrm{~Wb})$

Transformer emf:

$$
V_{\mathrm{emf}}^{\mathrm{tr}}=-N \frac{d \Phi}{d t}
$$

