CONFIDENTIAL

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2014 SESSION

SUBJECT CODE	: FEB 10103
SUBJECT TITLE	: CIRCUIT THEORY
LEVEL	: BACHELOR
TIME / DURATION	: 2.5 HOURS
DATE	:

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
- 6. Answer all questions in English.

THERE ARE 7 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

- (a) State the definition of:
 - (i) Kirchoff's Voltage Law (**KVL**)
 - (ii) Kirchoff's Current Law (**KCL**)

(4 marks)

- (b) Refer to the circuit of **Figure 1**:
 - (i) Use Kirchhoff's voltage law to find the voltage drops across R_2 and R_3 .
 - (ii) Determine the magnitude of the current I.
 - (iii) Solve for the unknown resistance R_1 .

(6 marks)

- (c) Refer to the network of **Figure 2**:
 - (i) Use Kirchhoff's current law to solve for the unknown currents I_1 , I_3 and I_4 .
 - (ii) Calculate the voltage **V** across the network.
 - (iii) Determine the values of the unknown resistors R_1 , R_3 and R_4 .

Figure 2

(4 marks)

Question 2

Refer to the circuit of Figure 3, find the following quantities:

- (a) The total resistance of the circuit, **R**_T
- (b) The indicated currents I_3 and I_4
- (c) The voltage V_{ab} .

Figure 3

(14 marks)

Question 3

(a) Figure 4 shows the sinusoidal waveform with T=50ms. Write the equation for the waveforms of *i* in Figure 4. Express the phase angle in degrees.

(4 marks)

Figure 4

SEPTEMBER 2014

CONFIDENTIAL

(b) With the following pairs of sinusoidal equations:

v =100 sin (ωt + 140°) V *i* = 80 sin (ωt - 160°) A

- (i) Sketch the phasor diagram
- (ii) Determine the phase difference between the waveforms and identify which waveform leads.

(2 marks)

(2 marks)

Question 4

A dc source is connected to terminals *a-b* of Figure 5. If the voltage across the 40μ F capacitor is 80 V,

- (a) Calculate the source voltage.
- (b) Find the total charge on the capacitors.

(4 marks)

Figure 5

SECTION B (Total: 60 marks) INSTRUCTION: Answer THREE (3) questions only Please use the answer booklet provided.

Question 5

Based on the given conditions for the transistor circuit of Figure 6, determine:

- (a) *I*_c
- (b) **V**_{CE}.

(20 marks)

Question 6

Refer to the circuit of Figure 7.

- (a) Find \mathbf{Z}_{T} , \mathbf{I}_{T} , \mathbf{I}_{1} , and \mathbf{I}_{2} .
- (b) Determine the voltage V_{ab}

(20 marks)

Question 7

Figure 8 shows the AC network, by using the superposition theorem, determine the voltage drop, V_0 (*t*) across capacitor.

Figure 8

(20 marks)

CONFIDENTIAL

Question 8

(a) A small electrical utility has a 600-V, 300-kVA capacity as shown in Figure 9. It supplies a factory with the power triangle shown in (b). This fully loads the utility. If a power factor correcting capacitor corrects the load to unity power factor, calculate the apparent power (kVA) at unity power factor.

Figure 9

(8 marks)

- (b) Refer to the circuit of **Figure 10**.
 - (i) Find the Thévenin equivalent circuit external to the indicated load at a frequency of 5 kHz.
 - (ii) Determine the power dissipated by the load if $Z_L=100\Omega \angle 30^\circ$.

(12 marks)

END OF QUESTION PAPER