UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION
 SEPTEMBER 2014 SESSION

SUBJECT CODE	$:$ FEB 10103
SUBJECT TITLE	$:$ CIRCUIT THEORY
LEVEL	$:$ BACHELOR
TIME / DURATION	$: 2.5$ HOURS
DATE	$:$

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
6. Answer all questions in English.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

(a) State the definition of:
(i) Kirchoff's Voltage Law (KVL)
(ii) Kirchoff's Current Law (KCL)
(b) Refer to the circuit of Figure 1:
(i) Use Kirchhoff's voltage law to find the voltage drops across $\boldsymbol{R}_{\mathbf{2}}$ and $\boldsymbol{R}_{\mathbf{3}}$.
(ii) Determine the magnitude of the current \mathbf{I}.
(iii) Solve for the unknown resistance $\boldsymbol{R}_{\mathbf{1}}$.

Figure 1
(c) Refer to the network of Figure 2:
(i) Use Kirchhoff's current law to solve for the unknown currents $\boldsymbol{I}_{1}, \boldsymbol{I}_{3}$ and \boldsymbol{I}_{4}.
(ii) Calculate the voltage \mathbf{V} across the network.
(iii) Determine the values of the unknown resistors $\boldsymbol{R}_{\mathbf{1}}, \boldsymbol{R}_{\mathbf{3}}$ and $\boldsymbol{R}_{\mathbf{4}}$.

Figure 2

Question 2

Refer to the circuit of Figure 3, find the following quantities:
(a) The total resistance of the circuit, $\mathbf{R}_{\mathbf{T}}$
(b) The indicated currents \mathbf{I}_{3} and \mathbf{I}_{4}
(c) The voltage V_{ab}.

Figure 3
(14 marks)

Question 3

(a) Figure 4 shows the sinusoidal waveform with $\mathbf{T}=50 \mathrm{~ms}$. Write the equation for the waveforms of \boldsymbol{i} in Figure 4. Express the phase angle in degrees.
(4 marks)

Figure 4
(b) With the following pairs of sinusoidal equations:

$$
\begin{aligned}
& \mathrm{v}=100 \sin \left(\omega t+140^{\circ}\right) \mathrm{V} \\
& i=80 \sin \left(\omega t-160^{\circ}\right) \quad A
\end{aligned}
$$

(i) Sketch the phasor diagram
(ii) Determine the phase difference between the waveforms and identify which waveform leads.
(2 marks)

Question 4

A dc source is connected to terminals $a-b$ of Figure 5. If the voltage across the $40 \mu \mathrm{~F}$ capacitor is 80 V ,
(a) Calculate the source voltage.
(b) Find the total charge on the capacitors.

Figure 5

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only
Please use the answer booklet provided.

Question 5

Based on the given conditions for the transistor circuit of Figure 6, determine:
(a) I_{C}
(b) $\quad V_{C E}$.

Figure 6

Question 6

Refer to the circuit of Figure 7.
(a) Find $\mathbf{Z}_{\mathbf{T}}, \mathbf{I}_{\mathbf{T}}, \mathbf{I}_{\mathbf{1}}$, and $\mathbf{I}_{\mathbf{2}}$.
(b) Determine the voltage \mathbf{V}_{ab}

Figure 7
(20 marks)

Question 7

Figure 8 shows the AC network, by using the superposition theorem, determine the voltage drop, $\boldsymbol{V}_{0}(\boldsymbol{t})$ across capacitor.

Figure 8
(20 marks)

Question 8

(a) A small electrical utility has a 600-V, 300-kVA capacity as shown in Figure 9. It supplies a factory with the power triangle shown in (b). This fully loads the utility. If a power factor correcting capacitor corrects the load to unity power factor, calculate the apparent power (kVA) at unity power factor.

(a)

(b) Factory power triangle

Figure 9
(8 marks)
(b) Refer to the circuit of Figure 10.
(i) Find the Thévenin equivalent circuit external to the indicated load at a frequency of 5 kHz .
(ii) Determine the power dissipated by the load if $\mathbf{Z}_{\mathrm{L}}=\mathbf{1 0 0 \Omega} \angle \mathbf{3 0 ^ { \circ }}$.

Figure 10

END OF QUESTION PAPER

