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INSTRUCTION: Answer FIVE (5) questions only.
Please use the answer booklet provided.
Question 1
a) Find the particular solution for the 1% order linear differential equation below by the
integrating factor.
d
P i3y=0xt y1)=1
dx
(5 marks)

b) The reaction to form an iodine molecule is a second-order kinetics rate of loss of iodine

atoms and follows the 1%'order ODE equation,

d_
dt

At 23°C in the gas phase this reaction has a rate constant & = 7.0x10° Lmol™'s™.

Using the separation of variables method solve the 1% order ODE to find 1 after 1.5 s if
the boundary conditionis 1, =6.72x10"mol L ™" at t=0s.

(5 marks)
c) The unit step function u(#) is defined as
t, 0<t<l
u(t) =
® {1, t>1
Show from the definition of Laplace transform that
L@Uﬂz—Lﬁ—e*)
2
S
Hint: Use Lu()}=[eu(e) dt
0
(5 marks)
d) Determine the following inverse Laplace transform by using partial fractions:
L_1 H_ (S = 2)
(s+2)*+3°
(5 marks)
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Question 2

Consider the following initial-value problem (IVP):

y"-2y'+5y =10sin x, y(0)=2, p'(0)=1

a) By solving the auxiliary equation, find the complementary function, y, .

(5 marks)

b) Hence, find the particular solution of the IVP, i.e. y(x) =y, +y, by using the suitable

particular integral, 3, for the given ODE.
(15 marks)

Question 3

Consider the following non-homogeneous 2™ order linear differential equation,

2
d—f-+2d—y+y =3te”
dt dt
\ y(0) =4
y'(0)=2

a) Taking the Laplace transform of both sides of the ODE, find an equation that Y(s)
satisfies.

(15 marks)

b) Hence, determine y(¢) by computing the inverse Laplace transform of Y (s).

(5 marks)
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Question 4

Find the solution to the heat flow problem

(20 marks)
ou o*u
—=3— O<x<rx t>0
ot ox”
u(0,8) = u(z,f) =0 t>0
u(x,0) =sin x — 6sin 4x O<x<rz
‘Question 5
The periodic function f(x) is defined as
£ -x, —n<x<0
X)) =
x, O<x<rm
a) Sketch f(x) intherange —4r<x<4r.
(2 marks)
b) Obtain the Fourier series for the function f(x).
(15 marks)
oy
c) Deduce a series for — ? when x=x.
(3 marks)
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Question 6
a) The periodic function is defined as
t+2, —2<t<-1
f(t)=11, -1<t<l
2—t, 1<t<2
(i) Sketch the periodic extensions of the function for 3 periods.

(3 marks)

(i) From the graph of f(¢) , determine whether the function f(¢) is even

function, odd function or neither odd nor even function. State your

reasoning.
(2 marks)

b) Determine the period of the function f(#) and hence find the Fourier coefficients &, ,
a, and b, of the function f'(¢).

(15 marks)

END OF QUESTION
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DIFFERENTIATION RULES

CONFIDENTIAL

d
— = d
1. dx(k') . 5. —cosx = —sinx
dx
—(x") =ax"! ihnr = £
2. dx 6. dx %
d Product Rule
5 — g =% 7 gy _ dv du
dx ’ iz “ax ! Vdx
Quotient Rule
d i dv
4. Esu.nx=cosx 8. .d_y_ Viax " %ax
dx v?
INTEGRATION RULES
n+l .
1. fx"dx=q+1+c 4. fginxdx——conx+c
X —_ X J—
9 J‘a dx=e*+¢ 5 jcosxdx—sinx+c
A I .
: ! LT : Integration by parts
: s : udgr = uvr — | vdu
FIRST ORDER LINE_I‘\R DIFFERENTIAL EQUATION
General Form of 1 order dy =y
' | ODE nonhomogeneous ;z:}’(x)y.— Q@)
2. | Integrating Factor Vix) = ol Pdx
3. | General Solution Vixdy = f Vix} Qfx) dx

SECOND ORDER LINEAR DIFFERENTIAL EQUATION

General Form of
2" order ODE
nonhomogeneous

déy
gx?

a

s .
thtoy=0(x)

Complementary
Function

v, = Ae™* + Be*

2 distinct real roots

3, = (4 + Bx)e®*

2 equal (repeated) real roots

¥, =¥ (Asin fx + Bcos fx)

Complex roots

Particular Solution,

Rix) ¥
.2'"
ax™ A4Ex 4+ Cxl koo f kx®
ax® 4+ bhx" Y 4
ap™® Ae™
arab® As™® o Ryt
Z:ﬁ::; Asinbxy + Bcosbhx
ax cos bx i
axsin b Asinbx + Bcos by + Cx cos bx + Exsinbx

General Solution

Y=¥%+t5
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TABLE OF LAPLACE TRANSFORMS

f(6)=2"{F(s)}

F(s)=%{f(t)}

f)=2"{F(s)}

F(s)=2{r ()}

1|1 L 2. | o :
S S—a
n! I'(p+1
3 tn, n=1,2,3,... S"+1 4. tpsp>_1 %
Jr i 1.3.5..2n -
5. |t 3 6. |42, n=1,2,3,.. nal
2s 2"s 2
. a S
7. sm(at - 8. | cos(at —
(af) s’ +a’ (ar) s> +a*
, 2as 2_q?
9. tsin(at) m 10. | tcos(at) _(:2 s aai)_z
. 24° . 2as®
11. | sin(at)— at cos(at — 12. | sm(at)+ atcos(at - e =
(at) (at) R (at) + at cos(at) (s> +a’)?
2 2 2 2
13. | cos(at) —atsin(at) % 14. | cos(at) + atsin(at) %
15. | sin(at +b) ssm(bg + a;:os(b) 16. | cos(at +b) scos(b2) - azsm(b)
s +a s"+a
17. | sinh(at) = faz 18. | cosh(af) < jaz
. b . s—a
19. | e sin(bt) (—a)? ) 20. | e cos(bt) s—a) 15
t : b at s—a
21. | e sinh(bt) m 22. | e cosh(br) (—a) - b2
!
23. | "e”, n=1,2,3,... — 24. | fcet) L2
(s—a) e e
55 | tO)=u(t-c) e 26. | 9=
" | Heaviside Function e " | Dirac Delta Function ¢
27, | w.()f(-0) e F(s) 28. | u, (g () e L {g(t+0)}
29. | &S () F(s—c) 30. | £"F(5), n=1,2,3,... (~1)" F™(s)
1 »
31. | = () [" Fadu 32. | [ f0yav £(s)
t s 0 s
! i 13 d
3. | [ ft-ng@)dr F(s)G(s) 34. | fE+T) = 1) s (? t
1-¢”°
35. | f'(®) sF(s)— f(0) 36. | /(1) s"F(s)—sf (0)— 1'(0)
37. | 120 SFE) =5 Q=510 PO~ £ ()
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FOURIER SERIES

a nmx nmx
x)=—"2+ a cos—+b sin— |, ~L<x<L,T=2L.
769= %4 3 g, 08"y 5in 2 |

n=|

where the Fourier coefficients, a,, a,, b,, as following:

1 L
a, =ZJLf(x)dx

1f .. nmx
a, =Z_J.Lf(x)cos7dx

L
b, = %IL f(x)sin%dx

FOURIER COSINE SERIES

The Fourier series of an even function on the interval —L<x< L ‘is
the cosine series

a @ nax
xX)=—2+>a,cos—
f(x) 5 T xa I

where the Fourier coefficients, a,, a,, b, , as following:
2L
a,=—[f(x)dx
Lo
2L nmx
a,=—|f(x)cos—dx
T { f(x)cos—

b,=0

n

FOURIER SINE SERIES

The Fourier series of an odd function on the interval — L < x < L is the
sine series

© . N

f(x)=2b,sin— I3

n=1

where the Fourier coefficients, a,, a,, b, , as following:
a,=0
a,=0

2L nax
b == sin—d.
=7 [ F(sin s
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Heat Equation

2
gl _po g

AT O0<x<L t>0
29

u(0,¢) =u(L,t) =0 t>0

u(x,0) = f(x) 0<x<L
® -k Az '2,
Solution : u(x,t) = che ( L ) sm(%)
. n=l
Wave Equation

2 2
271:=a22—1;i O<x<L >0
: x

u(0,8) =u(L,t)=0 t>0
uWhm)%wﬁm)

Solution : u(x,t) = Z[a" cds%t +b, sin%t}sin(%m)

n=1
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