UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	$:$ NMB 20102
SUBJECT TITLE	$:$ ELECTRONICS ENGINEERING
LEVEL	$:$ BACHELOR
TIME / DURATION	$: 2.5$ HOURS
DATE	$:$

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer TWO (2) question only.
6. Answer all questions in English.
7. Do not open the question paper until instructed to do so.

THERE ARE 8 PAGES OF QUESTIONS AND 1 PAGE OF APPENDIX, EXCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

The electrical behavior of diode can be described with ideal and practical models. Draw both models.

Question 2

The circuit shown on Figure 1 is a zener diode voltage regulator. If $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{2}=100 \Omega$, $V_{z}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{Zk}}=1 \mathrm{~mA}$, find the minimum value of R_{1} so that the zener diode stays in the breakdown region.
(10 marks)

Figure 1

Question 3

Determine the beta rating for the BJT shown in Figure 2. Then determine the value of I_{C} using both the alpha rating and the beta rating of the BJT.

Figure 2

Question 4

(a) Convert the following binary numbers to decimal.
(i) 10010001
(ii) 10111101.011
(b) Draw the logic circuit that implements the expression

$$
x=\bar{A} \cdot B \cdot C(\overline{A+D})
$$

SECTION B (Total: 60 marks)

INSTRUCTION: Answer only TWO (2) questions.
Please use the answer booklet provided.

Question 5

(a) Suppose the zener diode in Figure 3 has a breakdown voltage of 10 V . Calculate the minimum and maximum zener currents.
(8 marks)

Figure 3
(b) Using the characteristics in Figure 4, determine:
(i.) The value of I_{C} corresponding to $\mathrm{V}_{\mathrm{BE}}=+0.75 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CE}}=+5 \mathrm{~V}$.
(ii.) The value of $V_{C E}$ and $V_{B E}$ corresponding to $I_{C}=3 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{B}}=30 \mu \mathrm{~A}$.
(6 marks)

(a)

(b)

Figure 4
(c) Answer the following questions:
(i) Convert the following decimal numbers (58, 125 and 19) into the binary numbering system.
(6 marks)
(ii) Digital circuit in Figure 5 shows the combinational logic circuit with three inputs and one output. Give the Boolean algebra for \mathbf{S}, \mathbf{X} and \mathbf{Y}.
(6 marks)

Figure 5

Question 6

(a) The zener diode circuit in Figure 6 has zener voltage of 9 V . Given that $V_{S}=27 \mathrm{~V}$, $R_{S}=15 \mathrm{k} \Omega$, and $R_{L}=10 \mathrm{k} \Omega$. Assuming that the zener diode is operating in the breakdown region, calculate the current I_{S}, I_{L}, and I_{z} shown in the circuit.

Figure 9
(b) A water height sensor module in Figure 7 uses a silicon based bipolar junction transistor to energize and operate a $12 \mathrm{~V}_{\mathrm{DC}}$ relay. The operation of the circuit is as follows: When sensor detects water, switch is closed and the BJT shall turn 'ON'. The relay then will be energized. Given $\beta=100$, determine $I_{B}, I_{C}, I_{E}, V_{B E}, V_{C E}$ and $V_{C B}$.
(12 marks)

Figure 7
(c) Answer the following questions:
(i) Determine the binary numbers for the following hexadecimal numbers:

- $10 \mathrm{~A} 4_{16}$
- CF8E ${ }_{16}$
(ii) Design the logic circuit that has three inputs A, B and C , and whose output will be HIGH only when a majority of the inputs are HIGH. The design should include the truth table and Boolean expression and circuit diagram.

Question 7

(a) Consider the half wave rectifier circuit in Figure 8.
(i) Draw the resultant output voltage for the circuit.
(3 marks)
(ii) Derive the expression for DC voltage output if $V_{1}=V_{M} \cdot \sin \theta$ where V_{M} is the peak voltage and θ is the electrical angle.

Figure 8
(b) (i) Given the information in Figure 9, determine $\mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{C}}, \beta$, and R_{B}.

Consider germanium based BJT.
(ii) Find the saturation current $\mathrm{I}_{\text {Csat }}$ for the same circuit configuration.

Figure 9
(c) Answer the following questions:
(i) Convert the following hexadecimal number to binary:

- 38_{16}
- 59_{16}
- $\mathrm{A} 14_{16}$
- $5 \mathrm{C} 8_{16}$
(ii) Simplify the circuit diagram in Figure 10 using demorgan theorem or oolean equation.
(6 marks)

Figure 10

END OF QUESTION PAPER

APPENDIX 1

BOOLEAN THEOREMS

1. $X \bullet 0=0$
2. $X+\bar{X}=1$
3. $X+X Y=X$
4. $X \bullet 1=X$
5. $X+Y=Y+X$
6. $X+\bar{X} Y=X+Y$
7. $X \bullet X=X$
8. $X \bullet Y=Y \bullet X$
9. $\overline{X+Y}=\bar{X} \bar{Y}$
10. $X \bullet \bar{X}=0$
11. $X+(Y+Z)=(X+Y)+Z=X+Y+Z$
12. $\overline{X Y}=\bar{X}+\bar{Y}$
13. $X+0=X$
14. $X(Y Z)=(X Y) Z=X Y Z$
15. $X+1=1$
13a. $X(Y+Z)=X Y+X Z$
16. $\bar{A}=A$
17. $X+X=X$
13b. $(W+X)(Y+Z)=W Y+X Y+W Z+X Z$
