UNIVERSITI KUALA LUMPUR
MALAYSIA FRANCE INSTITUTE

FINAL EXAMINATION
 JANUARY 2014 SESSION

SUBJECT CODE	$:$ FAB20703, FAB30703
SUBJECT TITLE	$:$ ROBOTICS
LEVEL	$:$ BACHELOR
DURATION	$: 3$ HOURS
DATE / TIME	$:$

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) question only.
6. Answer all questions in English.
7. Fomula is appended.

THERE ARE 8 PRINTED PAGES OF QUESTIONS, AND 5 PAGES OF FOMULA EXCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

a) State the four (4) basic components of a robot manipulator.
b) How many Degrees-Of-Freedoms are required to position and orientate a robot endeffector in world space?
c) Define the term "robot's reach".
d) Give two (2) examples to demonstrate your understanding for a robot's reach.
e) State five (5) technical criteria commonly used in selecting a suitable robot for an industrial application.

Question 2

a) A point $P=\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]^{T}$ is attached to a rotating frame. The frame rotates 90° about the X-axis of the reference frame. Find the coordinates of the point relative to the reference frame after the rotation.
b) A frame represented by the matrix $\left[\begin{array}{cccc}0.527 & -0.574 & 0.628 & 6 \\ 0.369 & 0.819 & 0.439 & 4 \\ -0.766 & 0 & 0.643 & 6 \\ 0 & 0 & 0 & 1\end{array}\right]$ has been moved 6 units along the x-axis and 4 units along the z-axis. Find the representation of the new frame after the two movements.

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only.
Please use the answer booklet provided.

Question 3

a) A 3 D-O-F articulated arm is shown in Figure 1. Determine the overall transformation matrix for the end point of the arm and find the home position forward kinematics model.
(10 marks)

Figure 1 : Articulated arm subassembly.
b) A spatial three-degree of freedom spraying robot has been designed as shown in Figure 2.
i) Find the D-H parameter table for the robot.
(5 marks)
ii) Obtain the final transformation matrices by using the direct kinematic analysis.
(5 marks)

Figure 2 : A 3 D-O-F spraying robot.

Question 4

a) Define 'Inverse Kinematics'.
b) Figure 3 shows a cylindrical arm with two prismatic joints and a rotary joint. The corresponding arm parameters and the forward kinematics are given in Table 1 and 2 respectively. Find the inverse kinematic equations of the robot.

Figure 3. : Cylindrical Robot (RRP)

Table 1 : Arm Parameter Table

Link	θ_{i}	a_{i}	α_{i}	d_{i}
1	0°	0	0°	d_{1}
2	θ_{2}	a_{2}	-90°	0
3	0°	0	0°	d_{3}

Table 2 : Forward kinematics matrix

$$
H_{0}^{3}=\left[\begin{array}{cccccc}
c_{2} & 0 & -s_{2} & -d_{3} s_{2} & + & a_{2} c_{2} \\
s_{2} & 0 & -c_{2} & d_{3} c_{2} & + & a_{2} s_{2} \\
0 & -1 & 0 & & d_{1} & \\
0 & 0 & 0 & & 1 &
\end{array}\right]
$$

c) A spherical wrist with three rotary joints is shown in Figure 4, where the joint axes z_{3}, z_{4} and z_{5}, intersect at one point. The arm parameters are given in Table 3. Compute the Jacobian matrix J.

Figure 4. : Spherical wrist of a robot (RRR)

Table 3 : Arm parameter table

Link	θ_{i}	a_{i}	α_{i}	d_{i}
4	θ_{4}	0	-90°	0
5	θ_{5}	0	90°	0
6	θ_{6}	0	0°	d_{6}

Question 5

The Figure 5 below shows a relationship between 3 coordinate systems operating in the world coordinate frame, WC. In this robotics workcell the Robot Gripper is trying to track the Object Part as seen by the Camera.

Figure 5: Coordinate Frame relationship between robot gripper, camera and object part operating in the world coordinate space.
a) Draw the "Motion Mapping" for the transformation of the Gripper frame to the Part frame.

> (5 marks)
b) Derive the Del Operator equation matrix for Gripper \forall, the motion of the gripper about its own space.

Question 6

a) The Lagrangian function, L , of a dynamical system is given as follows:

$$
L=K(\dot{x})-P(x)
$$

Explain the meaning of the above equation.
b) Consider the point masses m_{1} and m_{2} at the distal end of links of the following $\theta-\mathrm{r}$ robot manipulator with a rotary joint and a prismatic joint as shown in Figure 6 below. Derive the differential equations of motion of the $\theta-r$ manipulator using the Lagrangian equation.

Figure 6. θ - r robot manipulator

APPENDIX

Matrix Functions

Rotation transformation:

$$
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] ; \quad R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] ; \quad R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

The D-H transformation matrix from the frame $x_{i-1} y_{i-1} z_{i-1}$ to the frame $x_{i} y_{i} z_{i}$ is:

$$
\begin{aligned}
H_{i-1}^{i} & =H\left(\theta_{i}\right) \operatorname{Tran}\left(d_{i}\right) \operatorname{Tran}\left(a_{i}\right) H\left(\alpha_{i}\right) \\
& =\left[\begin{array}{cccc}
C \theta_{i} & -C \alpha_{i} S \theta_{i} & S \alpha_{i} S \theta_{i} & a_{i} C \theta_{i} \\
S \theta_{i} & C \alpha_{i} C \theta_{i} & -S \alpha_{i} C \theta_{i} & a_{i} S \theta_{i} \\
0 & S \alpha_{i} & C \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The forward kinematics solution for an n-linked robot can be expressed as:
$H_{0}^{n}=\left[\begin{array}{cccc}\mathbf{n} & \mathbf{o} & \mathbf{a} & \mathbf{P} \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{cccc}n_{x} & o_{x} & a_{x} & P_{x} \\ n_{y} & o_{y} & a_{y} & P_{y} \\ n_{z} & o_{z} & a_{z} & P_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$
The inverse of a homogeneous transformation matrix H can be expressed as:
$H^{-1}=\left[\begin{array}{cc}R^{T} & -R^{T} P \\ 000 & 1\end{array}\right]=\left[\begin{array}{cccc}n_{x} & n_{y} & n_{z} & -n^{T} P \\ o_{x} & o_{y} & o_{z} & -o^{T} P \\ a_{x} & a_{y} & a_{z} & -a^{T} P \\ 0 & 0 & 0 & 1\end{array}\right]$

Trigonometry Functions

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \frac{\partial}{\partial \theta_{A}}(\cos (A+B))=-\sin (A+B) \\
& \frac{\partial}{\partial \theta_{B}}(\cos (A+B))=-\sin (A+B) \\
& \frac{\partial}{\partial \theta_{A}}(\sin (A+B))=\cos (A+B) \\
& \frac{\partial}{\partial \theta_{B}}(\sin (A+B))=\cos (A+B)
\end{aligned}
$$

Equation	Solution
(a) $\sin \theta=a$	$\theta=A \tan 2\left(a, \pm \sqrt{1-a^{2}}\right)$
(b) $\cos \theta=b$	$\theta=A \tan 2\left(\pm \sqrt{1-b^{2}}, \quad b\right)$
(c) $\left\{\begin{array}{l}\sin \theta=a \\ \cos \theta=b\end{array}\right.$	$\theta=A \tan 2(a, b)$
(d) $a \cos \theta-b \sin \theta=0$	$\begin{aligned} & \theta^{(1)}=A \tan 2\left(\begin{array}{ll} a, & b \end{array}\right) \\ & \theta^{(2)}=A \tan 2(-a, \quad-b)=\pi+\theta^{(1)} \end{aligned}$
(e) $a \cos \theta+b \sin \theta=c$	$\begin{aligned} & \theta^{(1)}=A \tan 2\left(c, \quad \sqrt{a^{2}+b^{2}-c^{2}}\right)-A \tan 2(a, \quad b) \\ & \theta^{(2)}=A \tan 2\left(c, \quad-\sqrt{a^{2}+b^{2}-c^{2}}\right)-A \tan 2(a, \quad b) \end{aligned}$
(f) $\left\{\begin{array}{l}a \cos \theta-b \sin \theta=c \\ a \sin \theta+b \cos \theta=d\end{array}\right.$	$\theta=A \tan 2(a d-b c, a c+b d)$
(g) $\left\{\begin{array}{c}\sin \alpha \sin \beta=a \\ \cos \alpha \sin \beta=b \\ \cos \beta=c\end{array}\right.$	

The Atan2 function can be defined as follows:
$A \tan 2\left(p_{x}, p_{y}\right)=\left\{\begin{array}{cl}\arctan \left(\frac{p_{y}}{p_{x}}\right) & p_{x}>0 \\ \arctan \left(\frac{p_{y}}{p_{x}}\right)+\pi & p_{x}<0 \\ \frac{\pi}{2} & p_{x}=0 \quad \& \quad p_{y}>0 \\ \frac{-\pi}{2} & p_{x}=0 \quad \& \quad p_{y}<0\end{array}\right.$

Jacobian Function.

The Del Operator ∇ for small motion about a fixed world coordinate frame can be given as follows:-

$$
\Delta T \approx\left[\begin{array}{cccc}
0 & -\delta_{z} & \delta_{y} & d x \\
\delta_{z} & 0 & -\delta_{x} & d y \\
-\delta_{y} & \delta_{x} & 0 & d z \\
0 & 0 & 0 & 1
\end{array}\right] \bullet T \approx \nabla \bullet T
$$

where,

$$
\nabla \approx\left[\begin{array}{cccc}
0 & -\delta_{z} & \delta_{y} & d x \\
\delta_{z} & 0 & -\delta_{x} & d y \\
-\delta_{y} & \delta_{x} & 0 & d z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The Del Operator for small motion with respect to its own frame ${ }^{T} \nabla$ can be defined as follows:
${ }^{T} \nabla=\left[\begin{array}{cccc}0 & -{ }^{T} \delta_{z} & { }^{T} \delta_{y} & { }^{T} d x \\ { }^{T} \delta_{z} & 0 & -{ }^{T} \delta_{x} & { }^{T} d y \\ -{ }^{T} \delta_{y} & { }^{T} \delta_{x} & 0 & { }^{T} d z \\ 0 & 0 & 0 & 0\end{array}\right]$
where,

$$
\begin{aligned}
{ }^{T} d x=\delta \bullet(\overrightarrow{d \times n})+\vec{d}_{p} \bullet \vec{n} & { }^{T} \delta x=\delta \bullet \vec{n} \\
{ }^{T} d y=\delta \bullet(\overrightarrow{d \times o})+\vec{d}_{p} \bullet \vec{o} & { }^{T} \delta y=\delta \bullet \vec{o} \\
{ }^{T} d z=\delta \bullet(\overrightarrow{d \times a})+\vec{d}_{p} \bullet \vec{a} & { }^{T} \delta x=\delta \bullet \vec{a}
\end{aligned}
$$

Note:

$\mathbf{d}, \mathbf{n}, \mathbf{o} \& \mathbf{a}$ vectors are extracts from the T Matrix d_{p} is the translation vector in \forall
δ is the rotational effects in \forall

The Jacobian matrix for an n-linked robot with position vector \mathbf{P} at the end of the robot arm and joint variables \mathbf{q} where $P=\left[\begin{array}{lll}p_{x} & p_{y} & p_{z}\end{array}\right]^{T}$ and $\mathbf{q}=\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{n}\end{array}\right]$, can be defined as follows:

$$
\begin{aligned}
& p_{x}=f_{1}\left(q_{1}, q_{2}, \ldots, q_{n}\right) \\
& p_{y}=f_{2}\left(q_{1}, q_{2}, \ldots, q_{n}\right) \\
& p_{z}=f_{3}\left(q_{1}, q_{2}, \ldots, q_{n}\right) \\
& v_{x}=\frac{d p_{x}}{d t}=\frac{\partial f_{1}}{\partial q_{1}} \frac{d q_{1}}{d t}+\frac{\partial f_{1}}{\partial q_{2}} \frac{d q_{2}}{d t}+\cdots+\frac{\partial f_{1}}{\partial q_{n}} \frac{d q_{n}}{d t} \\
& v_{y}=\frac{d p_{y}}{d t}=\frac{\partial f_{2}}{\partial q_{1}} \frac{d q_{1}}{d t}+\frac{\partial f_{2}}{\partial q_{2}} \frac{d q_{2}}{d t}+\cdots+\frac{\partial f_{2}}{\partial q_{n}} \frac{d q_{n}}{d t} \\
& v_{z}=\frac{d p_{z}}{d t}=\frac{\partial f_{3}}{\partial q_{1}} \frac{d q_{1}}{d t}+\frac{\partial f_{3}}{\partial q_{2}} \frac{d q_{2}}{d t}+\cdots+\frac{\partial f_{3}}{\partial q_{n}} \frac{d q_{n}}{d t}
\end{aligned}
$$

where,

$$
\frac{d q_{i}}{d t}=\dot{q}_{i}
$$

$$
J=\left[\begin{array}{c}
J_{v} \\
J_{\omega}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial q_{1}} & \frac{\partial f_{1}}{\partial q_{2}} & \cdots & \frac{\partial f_{1}}{\partial q_{n}} \\
\frac{\partial f_{2}}{\partial q_{1}} & \frac{\partial f_{2}}{\partial q_{2}} & \cdots & \frac{\partial f_{2}}{\partial q_{n}} \\
\frac{\partial f_{3}}{\partial q_{1}} & \frac{\partial f_{3}}{\partial q_{2}} & \cdots & \frac{\partial f_{3}}{\partial q_{n}} \\
\eta_{1} R_{0(3 \mathrm{col})}^{0} & \eta_{2} R_{0(3 \mathrm{col})}^{1} & \cdots & \eta_{n} R_{0(3 \text { col })}^{n-1}
\end{array}\right]
$$

where,
$\eta_{1}=1$ for revolute joint
$\eta_{1}=0$ for prismatic joint

In vector form, the Jacobian matrix can also be defined as follows:
i) For Revolute Joint:

$$
J=\left[\begin{array}{l}
J_{v} \\
J_{\omega}
\end{array}\right]=\left[\begin{array}{c}
\overrightarrow{\overrightarrow{Z_{i-1}} \times\left(\overrightarrow{O_{n}}-\overrightarrow{O_{i-1}}\right)} \\
\overrightarrow{Z_{i-1}}
\end{array}\right]
$$

ii) For Prismatic Joint:

$$
J=\left[\begin{array}{c}
J_{v} \\
J_{\omega}
\end{array}\right]=\left[\begin{array}{c}
\overrightarrow{Z_{i-1}} \\
\overrightarrow{0}
\end{array}\right]
$$

where, Z_{i-1} 's and O_{i-1} 's are the frame coordinates for the $i-1^{\text {th }}$ robot joint given by:

- Z_{i-1} is the $3^{\text {rd }}$ column of the $\mathrm{T}_{0}^{\mathrm{i}-1}\left(=\mathrm{A}_{1}{ }^{*} \ldots{ }^{*} \mathrm{~A}_{\mathrm{i}-1}\right)$
- O_{i-1} is $4^{\text {th }}$ column of the $\mathrm{T}_{0}{ }^{\mathrm{i}-1}\left(=\mathrm{A}_{1}{ }^{*} \ldots{ }^{*} \mathrm{~A}_{\mathrm{i}-1}\right)$
- O_{n} is $4^{\text {th }}$ column Of $\mathrm{T}_{0}{ }^{\mathrm{n}}$ (the FKS!)
- NOTE: when we extract the columns we only need the first 3 rows !!!.

Vector Function.

Cross Product of two vectors A and B. The end product is a vector \mathbf{C}.

$$
\begin{aligned}
& \mathbf{C}=\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
i & j & k \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| i+\left|\begin{array}{ll}
a_{3} & a_{1} \\
b_{3} & b_{1}
\end{array}\right| j+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| k \\
& =\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]=\left(a_{2} b_{3}-a_{3} b_{2}\right) i+\left(a_{3} b_{1}-a_{1} b_{3}\right) j+\left(a_{1} b_{2}-a_{2} b_{1}\right) k
\end{aligned}
$$

Dot Product of two vectors A and B. The end product is a scalar C .
$c=A \bullet B=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)$

