UNIVERSITI KUALA LUMPUR

Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	$:$ FED 10203
SUBJECT TITLE	$:$ ELECTRICAL TECHNOLOGY
LEVEL	$:$ DIPLOMA
TIME / DURATION	$:$
DATE	$:$

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) question only.
6. Answer all questions in English.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL question.

Please use the answer booklet provided.

Question 1

(a) Explain a phase relationship between the sinusoidal waveforms of the following set.

$$
\begin{aligned}
& i(t)=5 \sin \left(377 t-30^{\circ}\right) \mathrm{A} \\
& v(t)=10 \cos \left(377 t+80^{\circ}\right) \mathrm{V}
\end{aligned}
$$

(b) Referring to the Sinusoidal voltage waveform shown in the Figure 1 below, determine:
(i) Peak voltage, $\boldsymbol{V}_{\boldsymbol{P}}$
(ii) Peak to peak voltage, $\boldsymbol{V}_{p p}$
(iii) RMS Voltage (effective value), $\boldsymbol{V}_{r m s}$
(iv) Average voltage, $V_{A V}$
(v) Define period of a sine wave.
(vi) Define frequency of a sine wave.
(vii) Instantaneous voltage at $\mathbf{1 m s}$

Figure 1
(c) In the circuit shown in Figure 2, determine the value of the inductance (L) in resonance with the source voltage $v_{s}(t)=13 \cos \left(600 t+85^{\circ}\right) V$

Figure 2

Question 2

Analyze the series - parallel AC network in Figure 3:
(a) Find $\mathbf{Z}_{\mathbf{T}}$
(b) Determine the current $\mathbf{I}_{\mathbf{T}}$ and $\mathbf{I}_{\mathbf{2}}$

Figure 3

Question 3

Three (3) loads are connected in parallel to a $3 \mathrm{kV}_{\text {RMS }} \mathrm{AC}$ line, as shown in Figure 4. Given;

$$
\begin{array}{ll}
P_{1}=5 \mathrm{~kW}, & \mathrm{PF}_{1}=1 \\
\mathrm{P}_{2}=12 \mathrm{~kW}, & \mathrm{PF}_{2}=0.75 \text { lagging } \\
\mathrm{P}_{3}=8.5 \mathrm{~kW}, & \mathrm{PF}_{3}=0.63 \text { lagging }
\end{array}
$$

Figure 4
Find:
(a) Active power total $\left(\mathrm{P}_{\mathrm{T}}\right)$
(b) Reactive power total $\left(Q_{T}\right)$
(c) Apparent power total $\left(\mathrm{S}_{\mathrm{T}}\right)$
(d) Power factor total $(\cos \theta)$
(e) Current (I ${ }_{\text {RMS }}$)
(f) A fourth load Q_{4} is added in parallel to the three parallel loads as in Figure 4, such that the total power factor becomes 0.9 lagging while the total power remains the same. Find Q_{4} and the resulting S (New Apparent power)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only.
Please use the answer booklet provided.

Question 4

Calculate the value of voltage V_{0} in the circuit shown in Figure 5, by using :
(a) Nodal's analysis
(10 marks)
(b) Superposition's theorem.

Figure 5

Question 5

(a) Plastic kayaks are manufactured using a process called rotomolding which is diagrammed in Figure 6. Molten plastic is injected into a mold, which is then spun on the long axis of the kayak until the plastic cools, resulting in a hollow one piece craft. Suppose that induction motors used to spin the molds consume 50 kW at a power factor ($\mathrm{pf}=\cos \theta$) of 0.8 lagging from a $220 \angle 0^{\circ} \mathrm{V}_{\mathrm{RMS}}, 60 \mathrm{~Hz}$ line. We wish to raise the pf to 0.95 lagging by placing a bank of capacitors in parallel with the load. Determine the value of that capacitor.
(10 marks)

Figure 6 : Rotomolding process
(b) An industrial load as in Figure 7 requires 40 kW at power factor 0.84 lagging. The load voltage is $220 \angle 0^{\circ} \mathrm{V}_{\mathrm{RMS}}$ at 60 Hz . The transmission line impedance is $0.1+$ $j 0.25 \Omega$. Determine :
(i) The active (P) and reactive (Q) power losses in the line.
(ii) The active (P) and reactive (Q) power required at the input to the transmission line.

Figure 7

Question 6

(a) Refer to Figure 8, compute the magnitude of the line voltage at the load:
(i) $V_{A B}$
(ii) $V_{B C}$
(iii) $V_{C A}$
(9 marks)

Figure 8
(b) Calculate a three phase Star - Delta system as shown in Figure 9.

Figure 9
(i) Find the line voltages.
(ii) Find the load currents.
(iii) Find the line currents.
(iv) Determine the phase angle between a line voltage and a line current.

FORMULAE

$\mathrm{f}=\frac{1}{\mathrm{~T}} \mathrm{~Hz}$
$\omega=2 \pi \mathrm{frad} / \mathrm{sec}$
$Z_{R}=R \angle 0^{\circ} \Omega$
$\mathrm{Z}_{\mathrm{L}}=\mathrm{j} \mathrm{X}_{\mathrm{L}}=\mathrm{jL} \omega=\mathrm{L} \omega \angle 90^{\circ} \Omega$
$\mathrm{Z}_{\mathrm{C}}=-j X_{\mathrm{C}}=\frac{1}{\mathrm{jC} \mathrm{\omega}}=\frac{1}{\mathrm{C} \omega} \angle-90^{\circ} \Omega$

Series circuit : $\mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{3}+\ldots \ldots+\mathrm{Z}_{\mathrm{N}} \Omega$

Parallel circuit : $\frac{1}{\mathrm{z}_{\mathrm{T}}}=\frac{1}{\mathrm{z}_{1}}+\frac{1}{\mathrm{z}_{2}}+\frac{1}{\mathrm{z}_{3}}+\ldots . .+\frac{1}{\mathrm{Z}_{\mathrm{N}}} \Omega$

