UNIVERSITI KUALA LUMPUR

Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	$:$ FEB 23023
SUBJECT TITLE	$:$ ELECTROMAGNETISM
LEVEL	$:$ BACHELOR
TIME / DURATION	$: 3$ HOURS
DATE	$:$

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
6. Answer all questions in English.
7. Do not open the question paper until instructed to do so

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question1

In Cartesian coordinates, vector \mathbf{A} is directed from origin to point $P_{1}(3,2,4)$ and vector \mathbf{B} is directed from P_{1} to point $\mathrm{P}_{2}(-1,3,2)$. Determine:
(a) Vector \mathbf{A}
(b) Vector \mathbf{B}
(c) $\mathbf{A} \cdot \mathbf{B}$
(d) $\mathbf{A} \times \mathbf{B}$.

Question 2

Given point $\mathrm{P}_{1}(2, \pi / 4,2)$ and vector $\mathbf{A}=\hat{\mathbf{r}} \cos \emptyset-\emptyset \sin \emptyset+\hat{\mathbf{z}} \cos \emptyset \sin \emptyset$ defined in Cylindrical coordinates. Express P_{1} and vector \mathbf{A} in Spherical coordinates and evaluate \mathbf{A} at P_{1}

Question 3

A section of a sphere is described by $0 \leq R \leq 3,0^{\circ} \leq \theta \leq 90^{\circ}$, and $60^{\circ} \leq \emptyset \leq 90^{\circ}$. Find the:
(a) Surface area of the spherical section
(b) Enclosed volume

Question 4

For the scalar function $V=x y-z^{2}$, determine its directional derivative along the direction of vector $\mathbf{A}=\hat{\boldsymbol{x}}-\widehat{\boldsymbol{y}} z$ and then evaluate it at $P(3,-1,2)$.

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only.

Please use the answer booklet provided.

Question 5

(a) Given vectors $\mathbf{A}=-\widehat{\boldsymbol{x}} 5-\hat{\boldsymbol{y}} 2+\hat{\mathbf{z}} 3, \mathbf{B}=\widehat{\boldsymbol{x}} 2-\widehat{\boldsymbol{y}} 6+\widehat{\boldsymbol{z}} 4$ and $\mathbf{C}=\widehat{\boldsymbol{x}} 3+\hat{\boldsymbol{y}}+\hat{\mathbf{z}} 2$. Find:
(i) The magnitude, \boldsymbol{A} and unit vector $\widehat{\boldsymbol{a}}$
(ii) The angle between vector \mathbf{A} and $\mathbf{B}, \theta_{A B}$
(iii) \mathbf{A} vector \mathbf{D} whose magnitude is 9 and whose direction is perpendicular to both B and C
(b) Determine the divergence of $\mathbf{E}=\widehat{\boldsymbol{x}} 3 x^{2}+\widehat{\boldsymbol{y}} 2 z+\hat{\boldsymbol{z}} x^{2} z$ at $(2,-2,0)$.

Question 6

(a) A square plate in the $x-y$ plane is situated in the space defined by $0 \leq x \leq 2 \mathrm{~m}$ and $0 \leq y \leq 3 \mathrm{~m}$. Calculate the total charge on the plate if the surface charge density is given by $\rho_{s}=4 x y^{2} \mu C / m^{2}$
(b) A square with sides 2 m each has a charge of $Q_{1}=Q_{2}=Q_{3}=Q_{4}=20 \mu \mathrm{C}$ at each of its four corners as shown in Figure 1 below. Determine the electric field, E at a point $P, 5 \mathrm{~m}$ above the center of the square.

Figure 1

Question 7

(a) A proton with charge $q=1.6 \times 10^{-19} \mathrm{C}$ moving with a speed of $2.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ through a magnetic field with magnetic flux density of 2.5 T experiences a magnetic force of magnitude $3 \times 10^{-13} \mathrm{~N}$. Calculate the angle between the magnetic field and the proton's velocity.
(b) A $6 \mathrm{~cm} \times 12 \mathrm{~cm}$ rectangular loop of wire is situated in the $x-y$ plane with the center of the loop at the origin and its long sides parallel to the x-axis. The loop has a current of 20 A flowing anti-clockwise direction when viewed from above. Determine the magnetic field, \mathbf{H} and magnetic flux density, \mathbf{B} at the center of the loop. Take $\mu_{0}=4 \pi \times 10^{-7}$
(15 marks)

Figure 2

Question 8

(a) Determine voltages V_{1} and V_{2} across the 2Ω and 4Ω resistors shown in Figure 3 below. The loop is located in the $x-y$ plane, and its area is $4 \mathrm{~m}^{2}$. The magnetic flux density is $\mathbf{B}=-\widehat{\mathbf{z}} 0.3 t(\mathrm{~T})$ and the internal resistance of the wire may be ignored.
(10 marks)

Figure 3
(b) The wire shown in Figure 4 below carries a current I = 10 A . A 30 cm long metal rod moves with a constant velocity $\mathbf{u}=\widehat{\mathbf{z}} 5 \mathrm{~m} / \mathrm{s}$. Find V_{12}.

Figure 4

APPENDIX

Table 1: Summary of vector relations

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	x, y, z	r, ϕ, z	R, θ, ϕ
Vector representation $\mathbf{A}=$	$\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{r}} A_{r}+\hat{\phi} A_{\phi}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{R}} A_{R}+\hat{\boldsymbol{\theta}} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}$
Magnitude of A $\quad\|\mathbf{A}\|=$	$\sqrt[+]{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$	$\sqrt[+]{A_{r}^{2}+A_{\phi}^{2}+A_{Z}^{2}}$	$\sqrt[+]{A_{R}^{2}+A_{\theta}^{2}+A_{\phi}^{2}}$
Position vector $\overrightarrow{O P_{1}}=$	$\begin{gathered} \hat{\mathbf{x}} x_{1}+\hat{\mathbf{y}} y_{1}+\hat{\mathbf{z}} z_{1} \\ \text { for } P=\left(x_{1}, y_{1}, z_{1}\right) \end{gathered}$	$\begin{gathered} \hat{\mathbf{r}} r_{1}+\hat{\mathbf{z}} z_{1} \\ \text { for } P=\left(r_{1}, \phi_{1}, z_{1}\right) \end{gathered}$	$\hat{\mathbf{R}} R_{1}$, for $P=\left(R_{1}, \theta_{1}, \phi_{1}\right)$
Base vectors properties	$\begin{gathered} \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{x}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}=0 \\ \hat{\mathbf{x}} \times \hat{\mathbf{y}}=\hat{\mathbf{z}} \\ \hat{\mathbf{y}} \times \hat{\mathbf{z}}=\hat{\mathbf{x}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{x}}=\hat{\mathbf{y}} \end{gathered}$	$\begin{gathered} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}=\hat{\phi} \cdot \hat{\phi}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{r}} \cdot \hat{\phi}=\hat{\phi} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=0 \\ \hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{z}} \\ \hat{\phi} \times \hat{\mathbf{z}}=\hat{\mathbf{r}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{r}}=\hat{\boldsymbol{\phi}} \end{gathered}$	$\begin{gathered} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}} \cdot \hat{\phi}=1 \\ \hat{\mathbf{R}} \cdot \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}}=0 \\ \hat{\mathbf{R}} \times \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{R}} \\ \hat{\boldsymbol{\phi}} \times \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \end{gathered}$
Dot product $\quad \mathbf{A} \cdot \mathbf{B}=$	$A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$	$A_{r} B_{r}+A_{\phi} B_{\phi}+A_{Z} B_{Z}$	$A_{R} B_{R}+A_{\theta} B_{\theta}+A_{\phi} B_{\phi}$
Cross product $\mathrm{A} \times \mathrm{B}=$	$\left\|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_{x} & A_{y} & A_{Z} \\ B_{x} & B_{y} & B_{Z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_{r} & A_{\phi} & A_{Z} \\ B_{r} & B_{\phi} & B_{Z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{R}} & \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\phi}} \\ A_{R} & A_{\theta} & A_{\phi} \\ B_{R} & B_{\theta} & B_{\phi}\end{array}\right\|$
Differential length $d \mathbf{l}=$	$\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z$	$\hat{\mathbf{r}} d r+\hat{\phi} r d \phi+\hat{\mathbf{z}} d z$	$\hat{\mathbf{R}} d R+\hat{\boldsymbol{\theta}} R d \theta+\hat{\boldsymbol{\phi}} R \sin \theta d \phi$
Differential surface areas	$\begin{aligned} d \mathbf{s}_{x} & =\hat{\mathbf{x}} d y d z \\ d \mathbf{s}_{y} & =\hat{\mathbf{y}} d x d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} d x d y \end{aligned}$	$\begin{aligned} d \mathbf{s}_{r} & =\hat{\mathbf{r}} r d \phi d z \\ d \mathbf{s}_{\phi} & =\hat{\phi} d r d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} r d r d \phi \end{aligned}$	$\begin{aligned} d \mathbf{s}_{R} & =\hat{\mathbf{R}} R^{2} \sin \theta d \theta d \phi \\ d \mathbf{s}_{\theta} & =\hat{\boldsymbol{\theta}} R \sin \theta d R d \phi \\ d \mathbf{s}_{\phi} & =\hat{\boldsymbol{\phi}} R d R d \theta \end{aligned}$
Differential volume $d V=$	$d x d y d z$	$r d r d \phi d z$	$R^{2} \sin \theta d R d \theta d \phi$

Table 2: Coordinate transformation relations

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$\begin{aligned} & r=\sqrt[+]{x^{2}+y^{2}} \\ & \phi=\tan ^{-1}(y / x) \\ & z=z \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{x}} \cos \phi+\hat{\mathbf{y}} \sin \phi \\ & \hat{\phi}=-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$	$\begin{aligned} & A_{r}=A_{x} \cos \phi+A_{y} \sin \phi \\ & A_{\phi}=-A_{x} \sin \phi+A_{y} \cos \phi \\ & A_{Z}=A_{Z} \end{aligned}$
Cylindrical to Cartesian	$\begin{aligned} & x=r \cos \phi \\ & y=r \sin \phi \\ & z=z \end{aligned}$	$\begin{aligned} & \hat{\mathbf{x}}=\hat{\mathbf{r}} \cos \phi-\hat{\phi} \sin \phi \\ & \hat{\mathbf{y}}=\hat{\mathbf{r}} \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$	$\begin{aligned} & A_{x}=A_{r} \cos \phi-A_{\phi} \sin \phi \\ & A_{y}=A_{r} \sin \phi+A_{\phi} \cos \phi \\ & A_{Z}=A_{z} \end{aligned}$
Cartesian to spherical	$\begin{aligned} & R=\sqrt[+]{x^{2}+y^{2}+z^{2}} \\ & \theta=\tan ^{-1}\left[\sqrt[+]{x^{2}+y^{2}} / z\right] \\ & \phi=\tan ^{-1}(y / x) \end{aligned}$	$\begin{aligned} & \hat{\mathbf{R}}=\hat{\mathbf{x}} \sin \theta \cos \phi \\ & \quad+\hat{\mathbf{y}} \sin \theta \sin \phi+\hat{\mathbf{z}} \cos \theta \\ & \hat{\boldsymbol{\theta}}= \hat{\mathbf{x}} \cos \theta \cos \phi \\ & \quad \quad \hat{\mathbf{y}} \cos \theta \sin \phi-\hat{\mathbf{z}} \sin \theta \\ & \hat{\boldsymbol{\phi}}=-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \end{aligned}$	$\begin{aligned} A_{R}= & A_{x} \sin \theta \cos \phi \\ & +A_{y} \sin \theta \sin \phi+A_{z} \cos \theta \\ A_{\theta}= & A_{x} \cos \theta \cos \phi \\ & +A_{y} \cos \theta \sin \phi-A_{z} \sin \theta \\ A_{\phi}= & -A_{x} \sin \phi+A_{y} \cos \phi \end{aligned}$
Spherical to Cartesian	$\begin{aligned} & x=R \sin \theta \cos \phi \\ & y=R \sin \theta \sin \phi \\ & z=R \cos \theta \end{aligned}$	$\begin{aligned} \hat{\mathbf{x}}= & \hat{\mathbf{R}} \sin \theta \cos \phi \\ & \quad+\hat{\boldsymbol{\theta}} \cos \theta \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \\ \hat{\mathbf{y}}= & \hat{\mathbf{R}} \sin \theta \sin \phi \\ & \quad+\hat{\boldsymbol{\theta}} \cos \theta \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\ \hat{\mathbf{z}}= & \hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$	$\begin{aligned} A_{x}= & A_{R} \sin \theta \cos \phi \\ & +A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi \\ A_{y}= & A_{R} \sin \theta \sin \phi \\ & +A_{\theta} \cos \theta \sin \phi+A_{\phi} \cos \phi \\ A_{z}= & A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$
Cylindrical to spherical	$\begin{aligned} & R=\sqrt[+]{r^{2}+z^{2}} \\ & \theta=\tan ^{-1}(r / z) \\ & \phi=\phi \end{aligned}$	$\begin{aligned} & \hat{\mathbf{R}}=\hat{\mathbf{r}} \sin \theta+\hat{\mathbf{z}} \cos \theta \\ & \hat{\boldsymbol{\theta}}=\hat{\mathbf{r}} \cos \theta-\hat{\mathbf{z}} \sin \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \end{aligned}$	$\begin{aligned} & A_{R}=A_{r} \sin \theta+A_{Z} \cos \theta \\ & A_{\theta}=A_{r} \cos \theta-A_{Z} \sin \theta \\ & A_{\phi}=A_{\phi} \end{aligned}$
Spherical to cylindrical	$\begin{aligned} & r=R \sin \theta \\ & \phi=\phi \\ & z=R \cos \theta \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{R}} \sin \theta+\hat{\boldsymbol{\theta}} \cos \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \\ & \hat{\mathbf{z}}=\hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$	$\begin{aligned} & A_{r}=A_{R} \sin \theta+A_{\theta} \cos \theta \\ & A_{\phi}=A_{\phi} \\ & A_{Z}=A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$

FORMULA

Vector analysis

Gradient of a scalar T:

$$
\nabla T=\operatorname{grad} T=\hat{\mathbf{x}} \frac{\partial T}{\partial x}+\hat{\mathbf{y}} \frac{\partial T}{\partial y}+\hat{\mathbf{z}} \frac{\partial T}{\partial z}
$$

Directional derivative of T along âal:

$$
\frac{d T}{d l}=\nabla T \cdot \hat{\mathbf{a}}_{l} .
$$

Divergence of a vector \mathbf{E} :

$$
\nabla \cdot \mathbf{E}=\operatorname{div} \mathbf{E}=\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}
$$

Laplacian of a scalar V :

$$
\nabla^{2} V=\nabla \cdot(\nabla V)=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}
$$

Electrostatics

Charge distributions:

$$
\begin{aligned}
Q & =\int_{\mathbb{L}} \rho_{Z} d l \\
Q & =\int_{S} \rho_{S} d s \\
Q & =\int_{V} \rho_{\mathrm{v}} d v
\end{aligned}
$$

Electric field due to multiple charges:

$$
\mathbf{E}=\frac{1}{4 \pi \varepsilon} \sum_{i=1}^{N} \frac{q_{i}\left(\mathbf{R}-\mathbf{R}_{i}\right)}{\left|\mathbf{R}-\mathbf{R}_{i}\right|^{3}} \quad(\mathrm{~V} / \mathrm{m})
$$

$$
\varepsilon_{0}=8.85 \times 10^{-12} \simeq(1 / 36 \pi) \times 10^{-9} \quad(\mathrm{~F} / \mathrm{m})
$$

Magnetostatics

Magnetic force:
$\mathbf{F}_{\mathrm{m}}=q \mathbf{u} \times \mathbf{B}$
$F m=q u B \sin \theta$

Electromagnetic (Lorentz) force:
$\mathbf{F}=\mathbf{F}_{\mathrm{e}}+\mathbf{F}_{\mathrm{m}}=q \mathbf{E}+q \mathbf{u} \times \mathbf{B}=q(\mathbf{E}+\mathbf{u} \times \mathbf{B})$.

Magnetic flux density:

$$
\begin{equation*}
\mathbf{B}=\mu_{0} \mathbf{H}=\hat{\phi} \frac{\mu_{0} I l}{2 \pi r \sqrt{4 r^{2}+l^{2}}} \tag{T}
\end{equation*}
$$

For an infinitely long wire with $l \gg r$,
$\mathbf{B}=\hat{\boldsymbol{\phi}} \frac{\mu_{0} I}{2 \pi r} \quad$ (infinitely long wire).

Maxwell's equation for time-varying field

Magnetic flux:
$\Phi=\int_{S} \mathbf{B} \cdot d \mathbf{s} \quad(\mathrm{~Wb})$

Transformer emf:
$V_{\mathrm{emf}}^{\mathrm{tr}}=-N \frac{d \Phi}{d t}$

Motional emf:
$V_{\mathrm{emf}}^{\mathrm{m}}=\oint_{C}(\mathbf{u} \times \mathbf{B}) \cdot d \mathbf{l} \quad(\mathrm{~V})$

