UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	$:$ FEB 10102
SUBJECT TITLE	$:$ ELECTRICAL FUNDAMENTAL
LEVEL	$:$ BACHELOR
TIME / DURATION	$: 3.0$ HOURS
DATE	$:$

INSTRUCTIONS TO CANDIDATE

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
6. Answer all questions in English.
there are 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIX.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

In Figure 1, given the resistors values, $R 1=1 k \Omega, R 2=3.3 k \Omega$ and $R 3=R 4=100 \Omega$:
(a) Determine the 4-band color code for resistors, $R 1, R 2, R 3$ and $R 4$ with 5% tolerance.
(b) Calculate the equivalent resistance, $R_{A B}$ between point A and B .
(c) Explain briefly Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL)
(d) Define voltage, V and current, I, and state their units

Figure 1

Question 2

Based on circuit of Figure 2, calculate:
(a) the currents, i_{1}, i_{2}, i_{3} and i_{4}.
(b) the voltage drop across resistors 10Ω and 30Ω

Figure 2

Question 3

Three lamps A, B and C as shown in Figure 3 are connected in series across an 18 V supply. Lamp A has an internal resistance R_{A}, lamp B has an internal resistance R_{B}, and lamp C has an internal resistance R_{C}. If the total resistance is 36Ω, voltage drop across R_{B} is $V_{B}=5 V$, and voltage drop across R_{C} is $V_{C}=3 \mathrm{~V}$, determine:
(a) The total current in the circuit
(b) The value of resistances R_{A}, R_{B}, and R_{C}
(c) Power dissipated on each resistor R_{A}, R_{B}, and R_{C}

Figure 3

Question 4

Based on the circuit shown in Figure 4, fill up Table 1 with the related values of voltage, current, resistance, and power dissipated. Show all your works.
(Fill-up the answer in Appendix 1 and submit the page with your answer booklet).

Figure 4

Table 1

	\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	\mathbf{R}_{3}	TOTAL
Voltage, V				
Current, I				

SECTION B (Total: 40 marks)

INSTRUCTION: Answer only TWO (2) questions

Please use the answer booklet provided.

Question 5

By using the source transformation method on Figure 5:
(a) Determine the current through the 8Ω resistor. Indicate the current direction. (7 marks)
(b) Determine the voltage, V_{0}
(c) Verify your answer in (a) and (b) by using nodal analysis method.

Figure 5

Question 6

(a) Calculate the branch currents I_{1}, I_{2}, and I_{3} in the circuit of Figure 6 by using mesh analysis technique. Given, the resistance $R_{1}=10 \Omega, \quad R_{2}=20 \Omega, \quad R_{3}=15 \Omega$ and voltage $V_{1}=15 \mathrm{~V}, \quad V_{2}=25 \mathrm{~V}$
(b) Verify your answer in (a) by using superposition theorem

Figure 6

Question 7

Based on Figure 7:

(a) Determine the Thevenin equivalent circuit of the circuit shown in Figure 7, to the left of the terminals a-b
(b) Draw the circuit determined in (a)
(c) Calculate the current I_{L}, through load resistor for $R_{L}=6 \Omega \& 36 \Omega$

Figure 7

APPENDIX 1

Answer Table for Question 4

(SUBMIT WITH ANSWER BOOKLET)

