CONFIDENTIAL

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	: FEB 10103
SUBJECT TITLE	: CIRCUIT THEORY
LEVEL	: BACHELOR
TIME / DURATION	: 2.5 HOURS
DATE	:

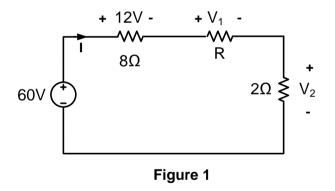
INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
- 6. Answer all questions in English.

THERE ARE 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.


Question 1

(a) State the definition of:

- (i) Kirchoff's Voltage Law (KVL)
- (ii) Kirchoff's Current Law (KCL)

(4 marks)

- (b) **Figure 1** shows the series circuit with the 60V supply.
 - (i) Find the current *I*.
 - (ii) Determine the voltage V_2 .
 - (iii) Determine the voltage V_1 using Kirchhoff's voltage law.

(4 marks)

(c) Using Kirchoff's current law, determine the current I_2 and I_s for the parallel circuit in Figure 2.

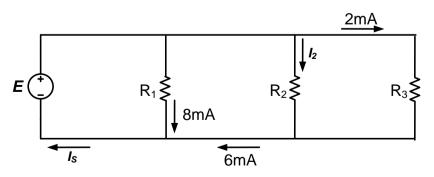
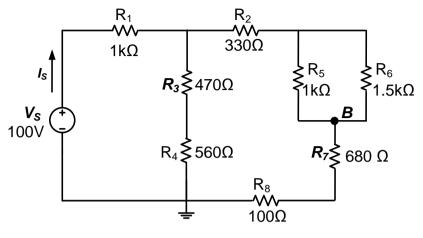



Figure 2

(4 marks)

Question 2

For the circuit in Figure 3 below, determine the:

(a)	Total resistance circuit	(5 marks)
(b)	Total current, (I _s)	(2 marks)
(c)	Current through R_3 and R_7 .	(4 marks)
(d)	Voltage at node B with respect to ground, (V в).	(2 marks)

Question 3

(a) Figure 4 shows the sinusoidal waveform with T=50ms. Write the equation for the waveforms of *i* in Figure 4. Express the phase angle in degrees.

(4 marks)

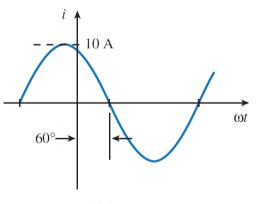


Figure 4

(b) With the following pairs of sinusoidal equations:

- (i) Sketch the phasor diagram
- (ii) Determine the phase difference between the waveforms and identify which waveform leads.

(2 marks)

(2 marks)

Question 4

Figure 5 shows the capacitor circuit.

- (a) Determine the total capacitance, C_T
- (b) Find the voltage across C1 and C3 if V_{DC} =100 V is applied to terminals *a-b*.

(7 marks)

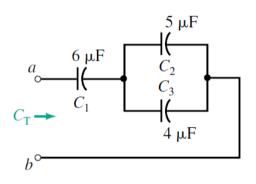
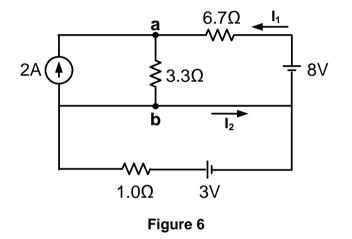


Figure 5

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only


Please use the answer booklet provided.

Question 5

Based on the circuit in Figure 6:

- (a) Write the loop-current (mesh-current) equations.
- (b) Solve for I_1 and I_2 .
- (c) Determine the voltage **V**_{ab}.

(20 marks)

Question 6

- (a) Based on the circuit in **Figure 7**, find the thevenin equivalent circuit at terminal **AB**.
- (b) Using the equivalent circuit in part (a), determine:
 - i. Current through the load resistance, R_L .
 - ii. Power dissipated in R_L

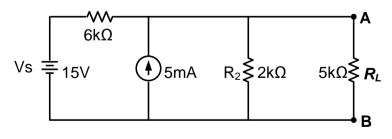
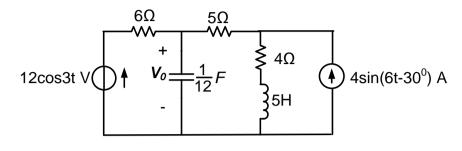



Figure 7

(20 marks)

Question 7

Figure 8 show the AC network, by using the superposition theorem, determine the voltage drop, $V_o(t)$ across capacitor,.

(20 marks)

Question 8

The load in most electrical power systems is predominantly inductive, so most have lagging power factors. This is an uneconomical situation for utility companies, who would prefer to have a unity power factor ($F_P = 1$). To achieve a unity power factor, the capacitive loads need to install in the system. Based on the above statement, analyze the power distribution system in **Figure 9**:

- (a) without capacitive loads, **C** and hence calculate :
 - (i) The total apparent power, S_{T} .
 - (ii) The total current, *i*_T.
 - (iii) The power factor, F_P

(10 marks)

- (b) by installing the capacitive load, **C** parallel to the load and hence calculate :
 - The capacitive VARs, (Q_c) that must be produced by capacitance C to make the power factor of the system equal unity.
 - (ii) The capacitance **C** necessary to achieve the power factor in part (iii).
 - (iii) The total power apparent power S_{T} .
 - (iv) The total i_{T}

(10 marks)

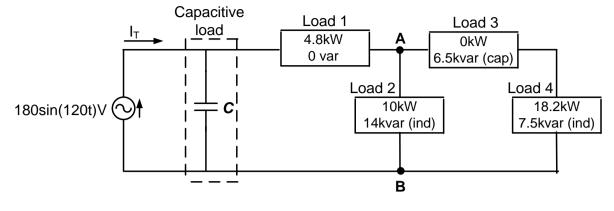


Figure 9

END OF QUESTION PAPER