UNIVERSITI KUALA LUMPUR

Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	$:$ FEB 10103
SUBJECT TITLE	$:$ CIRCUIT THEORY
LEVEL	$:$ BACHELOR
TIME / DURATION	$: 2.5$ HOURS
DATE	$:$

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
6. Answer all questions in English.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) State the definition of:
(i) Kirchoff's Voltage Law (KVL)
(ii) Kirchoff's Current Law (KCL)
(b) Figure 1 shows the series circuit with the 60V supply.
(i) Find the current I.
(ii) Determine the voltage \boldsymbol{V}_{2}.
(iii) Determine the voltage V_{1} using Kirchhoff's voltage law.

Figure 1
(c) Using Kirchoff's current law, determine the current $\boldsymbol{I}_{\mathbf{2}}$ and $\boldsymbol{I}_{\boldsymbol{S}}$ for the parallel circuit in Figure 2.

Figure 2

Question 2

For the circuit in Figure 3 below, determine the:

Figure 3
(a) Total resistance circuit
(b) Total current, (I_{s})
(c) Current through $\boldsymbol{R}_{\mathbf{3}}$ and $\boldsymbol{R}_{\mathbf{7}}$.
(d) Voltage at node \boldsymbol{B} with respect to ground, (VB).

Question 3

(a) Figure 4 shows the sinusoidal waveform with $\mathbf{T}=50 \mathrm{~ms}$. Write the equation for the waveforms of \boldsymbol{i} in Figure 4. Express the phase angle in degrees.

Figure 4
(b) With the following pairs of sinusoidal equations:

$$
\begin{aligned}
& v=100 \sin \left(\omega t+140^{\circ}\right) \\
& i=80 \sin \left(\omega t-160^{\circ}\right)
\end{aligned}
$$

(i) Sketch the phasor diagram
(2 marks)
(ii) Determine the phase difference between the waveforms and identify which waveform leads.

Question 4

Figure 5 shows the capacitor circuit.
(a) Determine the total capacitance, $\mathbf{C}_{\boldsymbol{T}}$
(b) Find the voltage across C 1 and C 3 if $\mathrm{V}_{\mathrm{DC}}=100 \mathrm{~V}$ is applied to terminals $a-b$.

Figure 5

SECTION B (Total: 60 marks)
 INSTRUCTION: Answer THREE (3) questions only

Please use the answer booklet provided.

Question 5

Based on the circuit in Figure 6:
(a) Write the loop-current (mesh-current) equations.
(b) Solve for \mathbf{I}_{1} and \mathbf{I}_{2}.
(c) Determine the voltage \mathbf{V}_{ab}.

Figure 6

Question 6

(a) Based on the circuit in Figure 7, find the thevenin equivalent circuit at terminal AB.
(b) Using the equivalent circuit in part (a), determine:
i. Current through the load resistance, \boldsymbol{R}_{L}.
ii. Power dissipated in R_{L}

Figure 7
(20 marks)

Question 7

Figure 8 show the AC network, by using the superposition theorem, determine the voltage drop, $V_{0}(t)$ across capacitor,.

Figure 8
(20 marks)

Question 8

The load in most electrical power systems is predominantly inductive, so most have lagging power factors. This is an uneconomical situation for utility companies, who would prefer to have a unity power factor ($F_{P}=\mathbf{1}$). To achieve a unity power factor, the capacitive loads need to install in the system. Based on the above statement, analyze the power distribution system in Figure 9:
(a) without capacitive loads, \boldsymbol{C} and hence calculate :
(i) The total apparent power, $\boldsymbol{S}_{\boldsymbol{T}}$.
(ii) The total current, \boldsymbol{i}_{T}.
(iii) The power factor, $\boldsymbol{F}_{\boldsymbol{P}}$
(10 marks)
(b) by installing the capacitive load, \boldsymbol{C} parallel to the load and hence calculate :
(i) The capacitive VARs, $\left(Q_{C}\right)$ that must be produced by capacitance \mathbf{C} to make the power factor of the system equal unity.
(ii) The capacitance \mathbf{C} necessary to achieve the power factor in part (iii).
(iii) The total power apparent power $\boldsymbol{S}_{\boldsymbol{T}}$.
(iv) The total $\boldsymbol{i}_{\boldsymbol{T}}$

Figure 9

