Document No : UniKL MFI_SD_AC41 CON FI DENTIAL

Revision No: 02

Effective Date: 01 December 2008

SETA

UNIVERSITI KUALA LUMPUR
Malaysia France Institute

FINAL EXAMINATION
SEPTEMBER 2013 SESSION

SUBJECT CODE . FSD23102
SUBJECT TITLE . MICROPROCESSOR
LEVEL . DIPLOMA

TIME / DURATION
(2HOURS)

DATE

INSTRUCTIONS TO CANDIDATES

1. Pleaseread the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.

4. Answer should be written in blue or black ink except for sketching, graphic and
illustration.

5. This question paper consists of TWO (2) sections. Section A and B. Answer all
guestions in Section A. For Section B, answer two (2) questions only.

6. Answer all questions in English.

THERE ARE 9 PAGES OF QUESTIONS AND 2 PAGES OF APPENDICES, EXCLUDING THIS PAGE.

SEPTEMBER 2013 CONFIDENTIAL

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(@)

(b)

(©)

(d)

(e)

(f)

Provide the definition of microprocessor.

(2 marks)
State TWO (2) system buses in M68K microprocessor.

(2 marks)
Describe the principles of CPU Execution Cycle for M68K Microprocessor.

(3 marks)

CPU is the “master” component in Microprocessor System. List THREE (3) main
components of CPU.

(3 marks)
Define Reprogrammable System and Embedded System and give TWO (2)
examples for each application.

(6 marks)
Differentiate between RAM and ROM in terms of data storage and computer
application process performed by both memory types.

(4 marks)

FSD 23102 MICROPROCESSOR 1

SEPTEMBER 2013 CONFIDENTIAL

Question 2

€)) Fill in the blanks with correct answers.

i. The function of Condition Code Register is . This
register consist of bits flags which are
(38 marks)
i. 1longword= words = bytes = bits.
(38 marks)

ii. If the interrupt signal level has the highest priority the status for Interrupt Mask
Bits (IMB) is
(1 mark)

(b) Describe the function of Program Counter and state the size in bits of this register.
(3 marks)
(9] Figure 1 shows the Pin Assignment for M68K microprocessor. Based on the figure

answer the following questions:

+aV
Ve Ve K > Do- Data Bus
c c Dis
CLK ey
> As-Az;; Address Bus
*Agis used inside 68k
— AS
FC, < — R/W
ProcessorStatus | 'O —— UDS gzysrnggﬁrnoﬁus
FC, <+ 68000 L » DS
E ‘ je— DTACK
6800 Peripheral UNA < L
Control N le— BR o
VPA ———p __ Bus Arbitration
— BG Control
BERR =] le— BGACK
System Control | gEcE
¥ RESET +—» L
HALT +— ‘ IPL, Interrupt Control
GND GND je— |PL,

Figure 1: Pin Assignment for M68K microprocessor.

FSD 23102 MICROPROCESSOR 2

SEPTEMBER 2013 CONFIDENTIAL

i. List THREE (3) states of RW pin in Asynchronous Bus Control.
(3 marks)
ii. Describe the function of System Control pins.
(3 marks)
(d) Figure 2 shows the example of Interrupt Process. The External Peripheral has
important task while M68K is executing its instructions normally. The interrupt signal
has been request by External Peripheral Interrupt Control Pin. If the external interrupt

higher than current process, briefly explain what are the next steps performed by
M68K.

External Peripheral request
interrupt for M68K

- -
[
y & LR e
i s""ll
b A o
==

External Peripheral

Figure 2: Interrupt Process
(4 marks)

FSD 23102 MICROPROCESSOR 3

SEPTEMBER 2013 CONFIDENTIAL

Question 3

Convert and perform the arithmetic operation below and show the conversion procedure

algorithmically.

(@)

(b)

()

(d)

()

(f)

(9)

Convert 453 to hexadecimal form.

(3 marks)
Convert $F4A to binary form.

(2 marks)
Convert %10011.111 to decimal form.

(2 marks)
Convert signed number $FC to decimal form.

(3 marks)

By using two’s complement binary arithmetic, compute the following operation.
Note: Your calculations should be in 8-bit format for integer numbers.
70 - $1F
(5 marks)
Based on your answers in Question 3(d), state the status of C-bit and Z-bit in
Condition Code Register.
(2 marks)

Describe the function of V-bit in Condition Code Register and state the status based
on your answers in Question 3 (d).
(3 marks)

FSD 23102 MICROPROCESSOR 4

SEPTEMBER 2013 CONFIDENTIAL

SECTION B (Total: 40 marks)
INSTRUCTION: Answer TWO (2) questions only
Please use the answer booklet provided.

Question 4

€)) Figure 3 shows the initial values of Address Registers, Data Registers and memory

locations in M68K microprocessor.

Initial Values for Address Initial Memory

& Data Registers

Al = $600601 $600600 $58

A2 = $600605 $600601 $63

A3 = $60060A $600602 $24
$600603 $12

DO = $22224444 $600604 $00

D1 = $FEDCBA12 $600605 $FF

D2 = $55556666 $600606 $02

D3 = $00000007 $600607 $BB
$600608 $00
$600609 $00
$60060A $05

Figure 3: Initial values for Address Registers, Data Registers and memory.

Explain the contents of the affected registers or memory locations when each of the
following instructions are executed. Each instruction is executed independently. The
initial values of the registers and memory are the same before each instruction is

executed.
i. ADD.B (A3), D3

(2 marks)
i MOVE . B $06(A1), DO

(2 marks)
iii. MOVE. L D2, $600600

(2 marks)
iv. MOVE. B $600605, D1

(2 marks)

FSD 23102 MICROPROCESSOR 5

SEPTEMBER 2013 CONFIDENTIAL

(b) Find the destination target and source for instruction code below.

MOVE.W D1, Do
(2 marks)

(c) Write complete assembly language programs to divide unsigned numbers $4D with
$04. Your programs also should store $4D and $04 in two data registers and start
with memory location $1000.

(5 marks)

(d) Based on the Question 4(c), compute the answers from that division operation and
illustrate it in terms of data arrangement. State the status for V-bit flag based on the
final answer.

(5 marks)

FSD 23102 MICROPROCESSOR 6

SEPTEMBER 2013 CONFIDENTIAL

Question 5

(@) Table 1 shows four (4) unsigned 8-bits data that need to be stored into allocated
memory address. Then, these four (4) data will be added and the result will be
stored in DO. Consider the assembly language programs below and continue the
programs with your answers by using do-while loop. Your programs should be

complete with comments.

Table 1: Data stored in equivalent memory address

Data Value Memory Address

#$2A $3000

#$41 $3001

#$43 $3002

#3$30 $3003

START ORG $400400

MOVE.B #$2A,$3000 ; Put $2A into address $3000
MOVE.B #$41,%$3001 ; Put $41 into address $3001
MOVE.B #$43,$3002 ; Put $43 into address $3002
MOVE.B #$30,$3003 ; Put $30 into address $3002

(15 marks)
(b) Consider the assembly language instruction below and discuss on the Addressing

Mode for this instruction.

MOVE.B #$2A,$3000
(5 marks)

FSD 23102 MICROPROCESSOR

SEPTEMBER 2013 CONFIDENTIAL

Question 6

€)) A post service company needs a system to calculate the volume of rectangular box
for international shipping services. As a software engineer, you need to create an
assembly language programs that will calculate the volume of rectangular box for this
post service company based on the following information:

i. Memory locations $400000 until $400002 contain the width, height and length

of rectangular, respectively as in Table 2.

Table 2: Data stored in equivalent Memory Address

Memory Address Data Value
$400000 #$03
$400001 #$02
$400002 #%$05

ii. Your programs should consist of Address Register Indirect Addressing
Mode.

iii. Use this formula given for calculating the volume of rectangle:

Volume of rectangle = width x height x length

iv. The result must be stored at memory address $700002.

Consider the assembly language programs below and please continue the programs
with your answers based on the above informations. Your programs should be

complete with comments.

START ORG $1000; programs origin start at memory $1000
LEA $400000,A0; Load affected address $400000 into A©
LEA $400001,A1; Load affected address $400001 into Al
LEA $400002,A2; Load affected address $400002 into A2
(15 marks)

FSD 23102 MICROPROCESSOR 8

SEPTEMBER 2013 CONFIDENTIAL

(b) Based on Question 6 (a) compute the result stored in memory address $700002.
Prove your answer with calculation.
(3 marks)
(c) Briefly explain on the MOVEA instruction code.
(2 marks)

END OF QUESTIONS

FSD 23102 MICROPROCESSOR 9

SEPTEMBER 2013 CONFIDENTIAL
APPENDIX 1: M68K Datasheet
Opcode | Size | Operand | CCR Effective Address s=source, d=destination, e=either, i=displacement Dperation Description
BWL sd KNEVC | Dn | An | (An) | (An)+ | -{An) | (iAn) | (iAnRn) |absW |absL| (iPC)| (iPC.Rn) | #n
MO0 B |DyDx *u*u=|g - -T1-7- - -1 -7 - - | - |Dyg+Dug+ X = Dxyg Add BCD source and eXtend bit to
~(Ay).-(Ax) Sl-l-l - e - -1 -1 - - |-(Ayhg + -(Axyg + X =>-(Aw)y; | destination. BCD result
ADD" | BWL|sDn =rx=slglg| s | 3 5 5 5 s s | s s [s"|s=0n=>Dn Add binary (ADDI or ADDQ is used when
On.d eld|d| d | d]| d d d [d] - - - |Dn+d>d source is #n. Prevent ADDO with #n L)
ADDAY | WL|shn |- sle|s| s H H 5 s | 5| s 5 5 [s=An=>An Add address (W sign-extended to 1)
ADDI™ | WL [#nd rrerld|-|d [d [d | d d d[d] - - s |[#n+d>d Add immediate to destination
ADDO* |BWL |#nd g |d| d | d q q d d | d]| - s |#n+d>d Add quick immediate (#n range: 1o 8)
ADDY. WL |Dy.Dx kel - I R - - - - - - - Dy D+ = Dx Add source and eftend bit to destination
~(Ay).-(Ax) - - g - - - Ay = () £ X > -
AND® | BWL|s.Dn 5| s H H 5 s |s| s 5 |5 |sANDDn = Dn Logical AND source to destination
On.d d| d|d]|d d d [d] - - |DndNDd > d (ANDI is used when source is #n)
ANDI™ | BWL |#nd d| d q q d d|d]| - s |#nANDd >d Logical AND immediate to destination
ANDI® |B |#nLCR - - - - - -] - s |#n AND CCR = CCR Logical AND immediate to CCR
ANDI® | W [#n SR - - - s |#nAND SR = SR Logical AND immediate to SR (Privileged)
ASL BWL [Dw.Dy - - - -] F Arithmetic shift Dy by Dx bits left/right
1SR #nly - - - s “:1‘:"‘1" Arithmetic shift Dy #n bits L/R (1 to 8)
W |d l-ld|d|d|d | & |dfd]- | D=L |irithmetic shift s bit kft/right (W anly)
Bee BW |address® |- - - - - - - |if ce true then Branch conditionally (ce table on back)
address = L (B or 16-bit offset to address)
BCHG |B L|Dnd —+—|g|-[d| d | d]d d d[d]| - - |NOT{bit number of d) = 7 |Set Zwith state of specified bit in d then
#n.d df-|d| d|d]d d d | d| - s |NOT(bitn of d) = bitnofd |invert the bit in d
BCIR |B L|Dnd 1 |-|d| d | d]|d d d | d]| - - |NOT(bit number of d) = |Set I with state of specified bit in d then
#nd dl-|d| d | d |4 d d [d] - s |0 = bit number of d clear the bit in d
BRA BW [address’ |——- -] - - - - - -l - - - |address = PL Branch abways (8 or 15-hit + offset to addr)
BSET [B L{Dnd —*—1g|-]d| d [d]d d d | d]| - - |NOT(bitnofd) =1 Set I with state of specified bit in d then
#nd d d| d | d|d d d [d] - s || > bitnofd set the bt in d
BSR |EWF [address” | - -] - - - - -1 - - - |PC = -(SP); address = PC_|Branch to subroutine (8 or 16-bit offset)
BIST (B L|Dnd e e: ld | d | 4| d d d | d| d d - |NOT(bit Do of d) = 1 Set I with state of specified bit in d
#nd d d| d | d|d d d|d]| d d | s [NOTibit#nofd) 21 Leave the bit in d unchanged
CHE L -*JUU | g s | s H H 5 s | 5| s 5 s |if Dn< or D=5 then TRAP | Compare Dn with 0 znd upper bound [s]
CLR BWL |d -0100|d|-|d| d | d | d d dfd] - - - |0=>d Clear destination to zero
CMP* | BWL|sDn e || s | s H H 5 s | 5| s 5 |5 |set CCRwithDn-s Compare Dn to source
CHEL® | WL |shn s lels | s | s | s 5 s | 5| s 5 s |set CCR with An - 5 Lompare An to source
CMPL" | BWL |#nd g - d | d q q d d|d]| - - 5 |set CCR withd - #n Compare destination to #n
CMPM ™ |BWL [(A (A | =] - -le | - |- - -1 - - | set CCR with (Ax) - (Ay) Compare (Ax) to (Ay): Increment Ax and Ay
DBecc | W |Dnaddres™|——- - -l - - - - |if ec false then { Dn-f = Dn | Test condition, decrement and branch
if On <= -1 then addr =PC } |(16-hit < offset to address)
DIVS W |sDn -***0| g s | s H H 5 s | s | s 5 s | +d2bit Dn / £IBhit s = £0n |Dn=[|G-bit remainder. 16-bit quotient]
DIl LE —***0|g s| s |5 | s 5 5 | 5| s 5 s | 32hit On / 16bit 5 = Dn D= 16-bit remainder. 16-hit quotient]
EOR* | BWL|Ond Ole d| d d d d d|d]| - s |Dn ¥R d =>4 Logical exchisive OR Dn to destination
EORI® |BWL |[#nd 0| d d| d q q d d|d]| - s |[#nflRd >d Logical exchisive OR #n fo destination
EORI* |6 |#n[CCR - - - - - - - - - s |#n XOR CLR = CCR Logical exchisive OR #n to CCR
EORI* | W [#aSR - - - - s |#n ¥R SR = SR Logical exchusive DR #n to SR (Privileged)
EXG L [RxRy gle| - - - - | register €= reqister Exchange registers (32-hit only)
BT WL |Dn 00]| - - - - |DnB = DnW | DnW = Dnl | Sign extend (change Bto W or Wio 1)
IEBAL| | | —— - - - - - - - - - |PC=-(38P); 5R—=-(55F) |Benerate llenal Instruction exception
MP d | - d [d d|d]| d i - |Td > PC Jump to effective address of destination
J5R d | -l-0d q d d|d]| d d - |PL=> 5P Td = FC push PC. jump to subroutine at address d
LEA Llshh |—— -le| s 3 5 5 | 5| s 5 - |Ts=tn Load effective address of s fo An
LINK Mn#n |- - - - - - - - |An = -(3F) 50 = An; Create local workspace on stack
5P+ #n = SF (negative n to allocate space)
LSL BWL | Dx.Dy *r*07|g - - - - X Logical shift Dy, Dx bits left/right
1SR Hnly al-l- - -1 -1-1-1- | = Logical shift Dy, #n bits L/R (#n:1 o 8)
W |d Sl-ld| d | d | d d d]d]| - s Logical shift d 1 hit left/right (W oaly)
MOVE" [BWL [sd els"|e| e | e |c¢& E e le| s 5 |st[s=>d Move data from source to destimation
WOVE | W |sCCR s{-|s| s | s |s 5 s | 5| s 5 s [s > [IR Move source to Condition Code Register
MIVE | W |=SR H | o3 H H 5 s | 5| s 5 s |5 3R Move source to Status Register (Privieged)
MOVE | W |SRd [d|-|d]| d q q d d|d]| - - - |SR=>d Move Status Register to destination
MOVE L(USPAn |[—— dl - - - - - -l - - - |USP = &n Move User Stack Painter to An (Privileged)
An LISP sl - - - - - - - - - - |An > LGP Wove An to User Stack Pointer (Privileged)
BWL sd XNZVC | Dn | &n | (4n) | (An)s | -(4n) | (ikn) | (iAnRn) [absW |absL| (iPC)| (iPC.Rn) | #n

FSD 23102 MICROPROCESSOR

10

SEPTEMBER 2013 CONFIDENTIAL
APPENDIX 1: M68K Datasheet (continue)
Opcode | Size | Operand | CCR Effective Address s=source, d=destinztion, e=either. i=displacement Dperation Description
BWL sd XMEVC | D | &n | (An) | (An)+ | -(An) | (ide) | (idnBn) |absW |absL| (iPC) | (iPC.Rn) [#n
MOVEA™ | WL[shn |—— slels| s |3 |s 8 s |5 | s H s|s>Mn Move source to An (MOVE s.An use MOVEA)
MOVEM*| WL [Rn-Red [—— - d d | d d d | d - |Registers = d Move specified registers to/from memory
s Rn-fin - 5| 3 - | s 5 s | 5] s 5 - |5 = Registers (W source is sign-extended to L for Rn)
MOVEP | WL (Dnfitn) |—— s - | d - - |On = (iAn)._(i+2 An)._{i+4 A | Move Dn to/from alternate memary bytes
(i.An) Dn d - | s - |(iAn) = Dn._{i+2An)._(i+4 A | (Access only even or odd addresses)
MOVER* | L [#nDn —**00]| ¢ S - - - - - | - - s [#n = Dn Move sign extended 8-hit #n to On
MULS | W |sDn -**00]| g s| s | 3| s 5 s | 5] s H s |lBhit s * £lGbit Dn = £0n | Multiply signed |G-bit; result: signed 32-hit
MULL | W |sDn -**00| g s| s | 3| s 5 s | s | s H s |IBbit s * 16kt Dn = Dn Multiply unsig'd 16-hit; result: unsig'd 37-hit
NBCD |6 |d *uru*| d d| d [d [d d d | d - |- [0-dg-X=>d Negate BCD with e¥tend, BCD result
NEG |BWL|d FrrE d| d | d|d d d | d - |0-d=d Negate destination (2's complement)
NEGY | BWL |d rres d| d | d | d d d | d - |0-d-X=>d Negate destination with eXtend
WP | | | - S - - - - - | - - |None No operation occurs
NOT |EWL|d —**00] d| d | d|d d d | d - - [NOT(d) =d Logical NOT destination (I's complemant)
OR* |BWL|s.Dn —**00| g s s |5 |3 5 s | s | s 5 |5 |sORDn—=Dn Logical OR
Dnd e d| d | d | d d d | d - |- |Dn0Rd=d (DRI is used when source is #n)
OR1* |BWL [#nd —**00]| ¢ d| d | d|d d d | d s [#nlRd=>d Logical IR #n to destination
ORI* [B |#n[CR - - - - - - - | - s |#n DR CCR = CCR Logical OR #n to CCR
ORI | W |#nSR - - - - - s |#nOR SR = SR Logical R #n to SR (Privileged)
PEA L]s - 5 - | s 5 s s s s |- [Ts=-(R) Push effective address of s onto stack
RESET | | |—— - - - - - |Assert RESET Line lssue a hardware RESET (Privileged)
ROL |BWL | DxDy =**0* g - - | ore /< Rotate Dy, Dx bits left/right (without X)
ROR Dy d - - - 5 Rotate Dy, #n bits left/right (#n:1to 8)
W g l-ldld|d]6| 6 [d]d - | Be——=L>t | Rotate d -bit Eft/vight (W iy}
ROKL | BWL | DxDy *=*0*| g - - - - g «-EE—‘ Rotate Dy, Dx bits L/R, ¥ used then updated
ROMR Dy d - - - 5 Rotate Dy, #n bits left/vight (#n:1to 8)
N |d - d| d | d | d d d | d - El:::‘-»ﬂ Rotate destination I-bit left/rioht (W only)
RTE - - | - - - |(8P) = SR: (8F)+ - PC | Return from exception (Privileged)
RTR - - - - |(SP)+ = CIR. (SP)+ = PC_|Return from subroutine and restore CCR
RTS - - - - |(SF)} = PC Return from subroutine
SBCD |8 (DyDx *U*U* | g - - - |Deg - Dy - X = D Subtract BCD source and eXtend bit from
~{Ay)-(Ax) - - | e - - |-(Ae) ;g - {Ay) g ¥ =>-{A) g | destination, BCD result
See |B [d 0 [—— d d| d | d | d d d|d - |Feoistruzthenl's >d |fectruethendB=11111111
else 05 > d elsedf=coooo000
STOP #n -l -] -] -] - - -] - - s |#n = SR STOP MWove #n to SR, stop processor (Privileged)
SUB* |BWL [s.Dn els|s| 3|53 |s 5 s 5| s 5 |5 |Dn-5—=Dn Subtract binary (SUBl or SUBH used when
Dnd el|d|d| d | d]| d d i | d - |- |d-Dn=>d source is #n. Prevent SUBD with #nl)
SUBA® | WL|shn [sle|{s| s |35 |s 5 s | 5] s 5 s |An-5 = An Subtract address (W sign-extended to 1)
SUBI® | BWL [#nd Frrerld|-|d | d | d | d d d | d s |d-#n>d Subtract immediate from destination
SUBD* |BWL |#nd =rresld|d]|d| d | d | d d d | d 5 |d-#n—>d Subtract quick immediate (#n range: | to)
SUBX | BWL | DyDx SR -0 I N - - - - |- - De-Dy-K =Dy Subtract source and edtend bit from
~{Ay)-(Ax) - e - - |-(hw) - -(y) - X > -(Ax) | destination
SWAE | W |Dn -**00] g - - - - |bits[3116] € —=bits[15:0] |Exchange the 16-hit halves of Dn
TAS B |d —**oo| g d| d [d | d d d | d - |testd>LCR; 1 >bitTofd |Nand I set to reflect d, bit7 of d settol
TRAP | - - - - 5 |PC>-(35P)SR=>-(35F): |Push PC and SR.PC set by vector table #n
(vector tzble entry) = PL | (#n range: 0 to15)
RV | | | - B - - |- - |IFV then TRAP #7 If overflow. exzcute an Dverflow TRAP
5T BWL |d 00 g - d| d | d | d d d | d - |testd = CCR N and I set to reflect destination
1INLK b | Sldl -] -] - - - -] - - - |An = 5P 5P+ = tn Remave local workspace from stack
BWL sd XMEVT | D | &n | (An) | (An}+ | -(An) | (iAn) | (idnBn) |absW |absL| (iPC) | (iPC.Rn) [#n
Condition Tests (+ OR. ! NOT. & JOR. * Unsigned. * Alternate cc) An Address register (I6/37-bit,n=0-T) ~ SSP Supervisor Stack Pointer (32-bit)
oc Condition Test | cc | Condition Test On Data register (8/16/32-bit. n=0-T) USP User Stack Pointer (32-bit)
T true | VC | overflow clear |1V Rn any data or address register SP Active Stack Pointer (same as AT)
F Talse 0 VS | overflow set V s Source, d Destination PC Program Counter (24-bit)
e higher than W +D | PL| pus M e Either source or destination SR Status Register (I5-bit)
[lowerarsame |C+1 | Ml | minus N #n |"‘I|"'|Edi3tE data. i Displacement | CCR Condition Code Register (lower B-bits of SF)
HE* CC* | higher or same | IC GE | greater or equal | I(N & V) BCD Binary Coded Decinl Nregative. 2 zero, V overflon, C carry, X extend
IF 05 | lower than | T [T | lezs than (EY) 1T Effective address * set accarding to operation’s result, = set directly
NE ot e 11 BT | greater than MeN<d]| , Long only: all athers are byte only - not affected, Ocleared, 1set, U undsfined
1] equal i LE | less or equal MWaW+1 Assembler calculates offset
— i Branch sizes: B or .S -128 to +27 bytes. .Wor L -32788 to +32767 bytes

Revised by Peter Csaszar, Lawrence Tech University — 2004-2006 Assembler automatically uses &, I, 0 or M form if possible. Use #n.L to prevent Quick optimization

| Distributed under the GNU general public use license

FSD 23102 MICROPROCESSOR 11

