Document No : UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION SEPT 2013 SESSION

SUBJECT CODE : FAD 20302

SUBJECT TITLE : INTRODUCTION TO ROBOTICS

LEVEL : DIPLOMA

TIME / DURATION : (2 HOURS)

DATE :

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
- 6. Answer all questions in English.

THERE ARE 5 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

- (a) Robots are considered to be a key element in automated manufacturing.
 - (i) Define an industrial robot term referring to Robotic Industries Association's (RIA).

(4 marks)

(ii) List three (3) laws of robotics

(6 marks)

(b) Robotics terminology consists of several elements. List *five* (5) of these elements and explain these components and their purpose.

(10 marks)

Question 2

(a) End effectors are devices attached to wrist of a manipulator. List **six** (6) end effectors commonly found in industry.

(6 marks)

(b) Illustrates *four (4)* relationships between accuracy and repeatability for industrial robot.

(8 marks)

(c) Compare the *three (3)* types of drive power sources by *preparing a table* to illustrates the strengths and weakness of each of it.

(6 marks)

Question 3

(a) List **seven** (7) major production applications of robots and determine the most common application in robotics industry.

(8 marks)

(b) One method of classifying a robot is by the geometric configuration of its work envelope. List a *four (4)* major configuration of industrial robot manipulator.

(4 marks)

(c) Describe *two (2)* advantages of revolute/articulated configuration over other three configurations

(4 marks)

(d) The Cartesian robots commonly used for pick and place work. Sketch the Cartesian robot configuration and its work envelop.

(4 marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer only TWO (2) questions.

Please use the answer booklet provided.

Question 4

(a) Sensor is the most important element to be added when developing the industrial robot. List *two* (2) advantages of sensor and name *four* (4) types of sensors and its application.

(12 marks)

- (b) Sketch the position and Orientation of Robot TCP Frame relative to robot base Frame of:-
 - I. Position: X=1000, Y=100, Z=750. Orientation: Roll= 90, Pitch= 0, Yaw= 0 (2 marks)
 - II. Position: X=1000, Y=100 Z=1000. Orientation: Roll= 90, Pitch= 90, Yaw= 0 (2 marks)
 - III. Position: X=1000, Y= -100, Z=1000. Orientation: Roll= 90, Pitch= 90, Yaw= 90 (2 marks)
 - IV. Position: X=1000, Y= -100, Z=750. Orientation: Roll= 90, Pitch= 90, Yaw= 90 (2 marks)

Question 5

(a) Using the notation scheme for defining manipulator configurations in *Table 1 in page 6*.
 Sketch a robot manipulator for following notation;

(i) LRL (5 marks)

(ii) RRL (5 marks)

(iii) TRL (5 marks)

(iv) LVL (5 marks)

Question 6

(a) Determine the **six** (6) factors that must be considered when selecting a robot to perform an industrial task.

(6 marks)

(b) List **four (4)** major configurations in industrial robot and give **one (1)** advantage and disadvantage of each configuration.

(10 marks)

(c) Referring to the **Figure 1**, illustrates the work envelope of this robot.

(4 marks)

Figure 1: The Spherical Robot.

Table 1: The Notation Scheme for Defining Manipulator Configurations

Notation	Diagram
Linear joint (type L)	Joint motion Input link Output link
Orthogonal joint (type O)	Joint motion Input link Output link
Rotational joint (type R)	Joint motion Input link Output link
Twisting joint (type T)	Joint motion Input link Output link
Revolving joint (type V)	Output link Joint motion Input link

END OF QUESTION