Document No : UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION SEPTEMBER 2013 SESSION

SUBJECT CODE : FLD 30103

SUBJECT TITLE : POWER ELECTRONIC AND DRIVES

LEVEL : DIPLOMA

TIME / DURATION : 2.5 HOURS

DATE :

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) question only.
- 6. Answer all questions in English.
- 7. Fomula is appended.

THERE ARE 4 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIX.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

(a) **List four** types of power electronics conversion in energy power converter.

(4 marks)

(b) **Draw** single-phase bridge rectifier with resistive load circuits and explain the operation.

(6 marks)

(c) **Explain** briefly the difference conversion of static applications and drive applications in power electronic system and **state two** examples each of them.

(10 marks)

Question 2

(a) **Draw** a single-phase inverter with resistive load, **sketch** the output voltage and **explain** the operation.

(10 marks)

(b) Prove that the DC output voltage (V_{DC}) of a single phase half-wave uncontrolled rectifier with resistive load is $V_{DC} = \frac{V_m}{\pi}$.

$$V_{DC} = \frac{1}{T} \int_{0}^{\tau/2} V_{m} \sin(\omega t) dt$$

(10 marks)

Question 3

(a) Name and draw three types of DC to DC power converter.

(6 marks)

(b) Name the type of converter in **Figure 1** and explain the operation when S is on and off.

(6 marks)

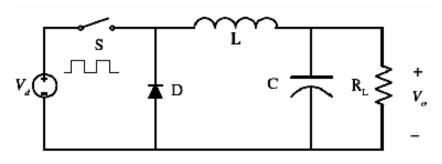


Figure 1

(c) (i) Explain the concepts of unidirectional and bidirectional controllers for AC voltage controllers.

(4 marks)

(ii) Explain the principles of On-Off Control for AC voltage controller in **Figure 2** and sketch the output voltage.

(4 marks)

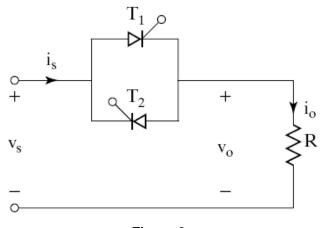


Figure 2

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only

Please use the answer booklet provided.

Question 4

- (a) Figure 3 is the boost converter which has parameter supply voltage (Vs) = 24 V, duty cycle (D) = 0.7, load resistance (R_L) = 10 Ω , inductor (L) = 14 μ H, capacitor (C) = 60 μ F and the switching frequency is 200KHz. Determine,
 - i. The output voltage Vo
 - ii. the average, maximum and minimum inductor current (I_L , I_{max} and I_{min})
 - iii. the output voltage rippled ($\frac{\Delta Vo}{Vo}$)
 - iv. the average output current I₀

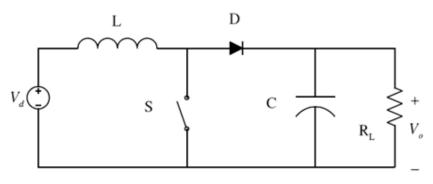


Figure 3

(20 marks)

Question 5

A single-phase half-wave controlled rectifier is connected to 120Vrms, 50 Hz source. The output of the rectifier is connected to a 10 ohm resistive load. If the average output voltage is 80% of the maximum possible output voltage, determine:

- (a) the delay angle α
- (b) the rms and average output voltage
- (c) the average and rms thyristor current
- (d) the input power factor

(20 marks)

Question 6

The AC voltage controller in **Figure 4** is connected to a resistive load R = 30 Ω and the input supply voltage Vs = 240 V (rms), 50 Hz. The delay angles of thyristorT1 and T2 are equal: $\alpha 1 = \alpha 2 = 90^{\circ}$. Calculate

- (i) the rms output voltage
- (ii) the input power factor (PF)
- (iii) the average and rms thyristor current (I_A and I_R)

(20 marks)

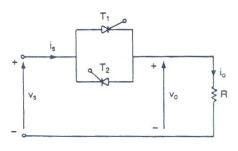


Figure 4

END OF QUESTION PAPER

APPENDIX

Performance Parameters of Rectifiers Formula

$$_{1.} P_{DC} = I_{DC}V_{DC}$$

$$2. P_{AC} = I_{RMS} V_{RMS}$$

3.
$$\eta = \frac{P_{DC}}{P_{AC}}$$

4.
$$V_{AC} = \sqrt{\{V^2\}_{RMS}} - V^2_{DC}$$

$$5. \quad FF = \frac{V_{RMS}}{V_{DC}}$$

$$6. \quad RF = \frac{V_{AC}}{V_{DC}}$$

7.
$$TUF = \frac{P_{DC}}{I_S V_S}$$

8.
$$DF = Cos \varphi$$

9.
$$HF = \left(\frac{I_s^2 - I_{S1}^2}{I_{S1}^2}\right)^{\frac{1}{2}}$$

$$10. \ CF = \frac{I_{S(PEAK)}}{I_S}$$

11.
$$PF = \frac{P_{REAL}}{P_{PMS}} = \frac{P_0}{VI} = COS\varphi$$

Trigonometro Function

$$\int \sin nx dx = -\frac{\cos nx}{n}$$

Single phase half-wave controlled rectifier:

$$V_n = \frac{V_{dc}}{V_{dm}} = 0.5(1 + \cos \alpha)$$
, $V_m = \sqrt{2} \times Vs$, $V_{dc} = \frac{V_m}{2\pi}(1 + \cos \alpha)$

$$V_{rms} = \frac{V_m}{2} \left[\frac{1}{\pi} \left(\pi - \alpha + \frac{\sin 2\alpha}{2} \right) \right]^{\frac{1}{2}}, \quad P_f = P_o/VA$$

Single phase full-wave controlled rectifier:

$$V_n = \frac{V_{dc}}{V_{dm}}$$
, $V_m = \sqrt{2} * Vs$, $V_{dc} = \frac{V_m}{\pi} (1 + \cos \alpha)$

$$V_{\rm rms} = V_{\rm m} \sqrt{\frac{1}{2} - \frac{\alpha}{2\pi} + \frac{\sin(2\alpha)}{4\pi}}$$
 , P_f = P_o/S where, S = Vsrms x Irms

Boost converter

$$\text{Vo = Vs / (1-D)}, \qquad I_L = \frac{V_S}{(1-D)^2 R}, \qquad I_{\text{max}} = \frac{V_S}{(1-D)^2 R} + \frac{V_S DT}{2L}, \quad I_{\text{min}} = \frac{V_S}{(1-D)^2 R} - \frac{V_S DT}{2L}$$

$$I_0 = V_0 / R$$
, $\frac{\Delta V_o}{V_o} = \frac{1 - D}{8LCf^2}$

AC voltage controller

$$V_o = V_s \left[\frac{1}{\pi} \left(\pi - \alpha + \frac{\sin 2\alpha}{2} \right) \right]^{\frac{1}{2}}, \quad P_o = V_s I_0, \quad I_A = \frac{\sqrt{2}V_s}{2\pi R} (\cos \alpha + 1)$$

$$I_R = \frac{V_s}{\sqrt{2}R} \left[\frac{1}{\pi} (\pi - \alpha + \frac{\sin 2\alpha}{2}) \right]^{\frac{1}{2}}$$