UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION
 SEPTEMBER 2013 SESSION

SUBJECT CODE	$:$ FLD 20603
SUBJECT TITLE	$:$ ELECTRONIC COMMUNICATION
LEVEL	$:$ DIPLOMA
TIME I DURATION	$: 3$ HOURS
DATE	$:$

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only
6. Answer all questions in English.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) Name the four (4) main elements of a communication system, and draw a diagram that shows their relationship.
(b) Name the device used to convert an information signal to a signal compatible with the medium over which it is being transmitted.
(c) Define the propagation velocity.

Question 2

(a) Explain the meaning of decibel and it's application in communication system. (2 marks)
(b) A signal enters the circuit with a value of 0.1 V and is amplified to 5 V . The input and the output resistances are the same. Calculate the voltage gain in dB .
(c) How are decibels used in multistage systems? What is the principle involved?
(d) A new communications cable is installed and the signal level, in volts increases by one half. Calculate the increase in dB.

Question 3

(a) Explain how noise affects the original communication signal.
(2 marks)
(b) Noise values in millivolts as follows are measured at various times: 10, -100, 35, -57, $90,26,26,-10,-15,-20$. Calculate the rms noise value.
(3 marks)
(c) An antenna with noise temperature $=75 \mathrm{~K}$ is connected to a receiver input with noise temperature $=300 \mathrm{~K}$. Calculate the overall noise temperature, noise ratio, and noise figure?
(3 marks)
(d) A signal arrives at the preamplifier of a receiver with a signal power of 1 W and a noise power of 0.01 W . Determine the signal to noise ratio of the preamplifier.
(2 marks)

Question 4

(a) Express 0 dBm in dBW .
(b) An audio amplifier might have an output of 7 dBW . Find the output value in watts.
(c) A signal of 10.2 v corresponds to what value in dBV .
(d) Given the temperature is 300 K and the bandwidth is 3 kHz .Calculate the equivalent noise resistance when the measured noise is $300 \mu \mathrm{~V}$.

SECTION B (Total: 60 marks)

INSTRUCTION: Answer only THREE (3) questions.

Please use the answer booklet provided.

Question 5

A 1800 Hz signal which has an amplitude of 30 V , amplitude modulates (AM) a 50 MHz carrier which when un-modulated has an amplitude of 65 V .
(a) Define Amplitude Modulation (AM).
(b) Sketch the modulating and the carrier signals.
(c) Construct the modulated wave.
(d) Calculate the modulation index.
(e) Sketch the frequency spectrum or tne modulated wave.
(f) Calculate the bandwidth.
(g) Write the trigonometric equation for the modulated wave.
(h) State the advantages and disadvantages of Amplitude Modulation.

Question 6

The use of tuned LC circuits is found in every television, AM/FM receiver or other applications where tuning is important.
Figure 1 shows a parallel LC circuit which is sometimes called a tank circuit. At resonant frequency, inductive reactance is equal to the capacitive reactance. By referring to Figure 1;

Figure 1
(a) Draw the resonant response curve.
(b) Briefly explain the response curve in (a).
(c) Calculate the resonant frequency and inductive reactance.
(d) Calculate the Quality and $Z_{\text {TANK }}$.
(e) Determine the bandwidth.
(2 marks)
(f) If a $27 \mathrm{k} \Omega$ load has been placed across the tank. Calculate Qckt and the new bandwidth.
(4 marks)
(g) Also comment on bandwidth for question (f).

Question 7

The AM modulator receives two signals, the signal A from an external source and the signal B is from a built in oscillator. The modulator circuit combines the two signals producing an AM signal which is passed on to the transmission medium.

Figure 2
(a) Name Signal A and Signal B as shown in Figure 2.
(b) The total power content of an AM signal is 100 W . Determine the power being transmitted at the carrier frequency and at each of the sidebands when the modulation percentage is 20% and 60%.
(c) Derive the equation for the total power content in AM signal.
(d) For an AM modulator with a 150 kHz carrier and a 10 kHz signal, determine the frequency for the upper and lower sidebands.
(e) From (d), sketch the output frequency spectrum.

Question 8

A FM modulator has a modulation index of 1.5. The modulating signal is
$\operatorname{Vm}(\mathrm{t})=5 \cos \left(12 \times 10^{3} \mathrm{t}\right)$ and the carrier is $\mathrm{Vc}(\mathrm{t})=8 \cos \left(5 \times 10^{6} \mathrm{t}\right)$. With the aid of a Bessel Function table as shown in Table 1, determine:
(a) The frequency deviation, frequency swing, maximum and minimum frequencies of the FM signal.
(b) The number of sets of significant sidebands.
(2 marks)
(c) The amplitudes and the frequencies of the carrier and the significant sidebands.
(4 marks)
(d) The bandwidth.
(e) List the advantages of FM compared to AM.
(6 marks)

Table 1: Bessel functions Table.

Modulation Index	Carrier	Sidebands (Pairs)															
		1st	2d	3d	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th
0.00	1.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.25	0.98	0.12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.5	0.94	0.24	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.0	0.77	0.44	0.11	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-
1.5	0.51	0.56	0.23	0.06	0.01	-	-	-	-	-	-	-	-	-	-	-	-
2.0	0.22	0.58	0.35	0.13	0.03	-	-	-	-	-	-	-	-	-	-	-	-
2.5	-0.05	0.50	0.45	0.22	0.07	0.02	-	-	-	-	-	-	-	-	-	-	-
3.0	-0.26	0.34	0.49	0.31	0.13	0.04	0.01	-	-	-	-	-	-	-	-	-	-
4.0	-0.40	-0.07	0.36	0.43	0.28	0.13	0.05	0.02	-	-	-	-	-	-	-	-	-
5.0	-0.18	-0.33	0.05	0.36	0.39	0.26	0.13	0.05	0.02	-	-	-	-	-	-	-	-
6.0	0.15	-0.28	-0.24	0.11	0.36	0.36	0.25	0.13	0.06	0.02	-	-	-	-	---	-	-
7.0	0.30	0.00	-0.30	-0.17	0.16	0.35	0.34	0.23	0.13	0.06	0.02	-	-	-	-	-	-
8.0	0.17	0.23	-0.11	-0.29	-0.10	0.19	0.34	0.32	0.22	0.13	0.06	0.03	-	-	-	-	-
9.0	-0.09	0.24	0.14	-0.18	-0.27	-0.06	0.20	0.33	0.30	0.21	0.12	0.06	0.03	0.01	-	-	-
10.0	-0.25	0.04	0.25	0.06	-0.22	-0.23	-0.01	0.22	0.31	0.29	0.20	0.12	0.06	0.03	0.01	-	-
12.0	-0.05	-0.22	-0.08	0.20	0.18	-0.07	-0.24	-0.17	0.05	0.23	0.30	0.27	0.20	0.12	0.07	0.03	0.01
15.0	-0.01	0.21	0.04	0.19	-0.12	0.13	0.21	0.03	-0.17	-0.22	-0.09	0.10	0.24	0.28	0.25	0.18	0.12

END OF QUESTION PAPER

