UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION
 SEPTEMBER 2013 SESSION

SUBJECT CODE	$:$ FED 20103	
SUBJECT TITLE	$:$	ELECTRICAL MACHINES
LEVEL	$:$	DIPLOMA
TIME I DURATION	$:$	2.5 HOURS
DATE	$:$	

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. Answer four (4) questions only.
6. Answer all questions in English.

THERE ARE 5 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

INSTRUCTION: Answer FOUR questions only.

Please use the answer booklet provided.

Question 1

(a) Derive the e.m.f (Eg) equation for the shunt DC generator. State clearly the meaning and units of the symbols used.
(b) In a particular DC generator, if $P=8, Z=400, N=300 \mathrm{rpm}$ and $\Phi=100 \mathrm{mWb}$, calculate generated e.m.f (Eg) if winding in :-
(i) Lap connected.
(2.5 marks)
(ii) Wave connected.
(2.5 marks)
(c) A 4 pole, lap wound connected 750 rpm DC shunt generator has an armature resistance of 0.4Ω and field resistance of 200Ω. The armature has 720 conductors and the flux is 30 mWb . If the load resistance is 15Ω, determine the terminal voltage.
(15 marks)

Question 2

(a) Explain two (2) advantages of DC series motor as compared to DC shunt motor.
(2 marks)
(b) A 200 V DC shunt motor has $\mathrm{R}_{\mathrm{a}}=0.1 \Omega, \mathrm{R}_{\mathrm{f}}=240 \Omega$ and rotational losses of 236 W . On full load, the input current is 9.8 A with motor running at $1450 \mathrm{r} / \mathrm{min}$.

Determine :
(i) Generated power, P_{g}. (4 marks)
(ii) Output power, Po. (5 marks)
(iii) Load torque, T_{o} (2 marks)
(iv) Full load efficiency,ち
(2 marks)
c) A DC series motor drives a fan at $800 \mathrm{r} / \mathrm{min}$ and takes 20 A when fed from rated voltage of 230 V . The motor resistance is 0.4Ω. The motor speed is to be raised to $1000 \mathrm{r} / \mathrm{min}$ by voltage control. Determine the voltage and current in case the magnetic circuit is saturated. (Hint, $\Phi=$ constant).
(10 marks)

Question 3

(a) Draw the equivalent circuit of a transformer with primary quantities referred to the secondary side.
(b) A $25 \mathrm{kVA}, 2200$ / $220 \mathrm{~V}, 50 \mathrm{~Hz}$, distribution transformer is tested for efficiency as follows :

Open circuit test (L.V side) :	220 V	4 A	150 W
Short circuit test (H.V. side) :	90 V	10 A	350 W

If the transformer operates at full load, determine :
(i) transformer parameters.
(ii) transformer approximation equivalent circuit, when referred to secondary side.
(iii) total copper losses, when transformer operating at 0.8 lagging power factor.
(20 marks)

Question 4

(a) State two (2) advantages of a three phase induction motor when compared to a DC motor. (5 marks)
(b) A 4-pole, 3-phase, $415 \mathrm{~V}, 50 \mathrm{~Hz}$ induction motor has the following parameters of its circuit model.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{s}}=1.2 \Omega \\
& \mathrm{j} \mathrm{X}_{\mathrm{s}}=1.16 \Omega \\
& \mathrm{R}_{\mathrm{r}}=0.4 \Omega \\
& \mathrm{j} \mathrm{X}_{\mathrm{r}}=1.16 \Omega \\
& \mathrm{j} \mathrm{X}_{\mathrm{m}}=35 \Omega
\end{aligned}
$$

Rotational losses $=800 \mathrm{~W}$
For speed of $1440 \mathrm{r} / \mathrm{min}$, determine:
(i) Stator current and power factor
(ii) Air gap power and mechanical power.
(iii) Output power and efficiency of the motor.

Question 5

(a) Define the following terms related to a stepper motor.
(i). Holding torque.
(2.5 marks)
(ii). Step angle.
(b) A single phase $120 \mathrm{~V}, 50 \mathrm{~Hz}$ four pole induction motor has the following constants in the equivalent circuit.
$\mathrm{R}_{1}=\mathrm{R}_{2}=2 \Omega$
$\mathrm{X}_{1}=\mathrm{X}_{2}=\mathrm{j} 2 \Omega$
$X_{m}=j 50 \Omega$
There is a friction and windage loss of 35 W .
For a 10% slip, calculate :
(i) Motor input current.
(16 marks)
(ii) Motor efficiency

END OF QUESTION PAPER

