SET A



## UNIVERSITI KUALA LUMPUR Malaysia France Institute

# FINAL EXAMINATION

## **SEPTEMBER 2013 SESSION**

| SUBJECT CODE    | : FLD 20403      |
|-----------------|------------------|
| SUBJECT TITLE   | : DIGITAL SYSTEM |
| LEVEL           | : DIPLOMA        |
| TIME / DURATION | : 3.0 HOURS      |
| DATE            | :                |

## INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
- 6. Please answer the questions (2b), (3a), (3e) and (6b) in appendix B, and attach together with your answer booklet
- 7. Answer all questions in English.

THERE ARE 7 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIX.

#### SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.

#### **Question 1**

- (a) Convert the following binary numbers to decimal number:
  - (i) 1101 1101<sub>2</sub>
     (2 marks)
     (ii) 100110.101<sub>2</sub>
     (2 marks)
     (iii) 111111.111<sub>2</sub>
     (2 marks)

#### (b) Convert the following numbers:

|     | (i)   | 111110011010.0011010 <sub>2</sub> to Hexadecimal number     |           |
|-----|-------|-------------------------------------------------------------|-----------|
|     |       |                                                             | (2 marks) |
|     | (ii)  | 47E.5A <sub>16</sub> to Binary number                       |           |
|     |       |                                                             | (2 marks) |
|     | (iii) | 5674. 342 $_8$ to Decimal number                            |           |
|     |       |                                                             | (2 marks) |
| (C) | Deco  | de the following ASCII message.                             |           |
|     |       | WpN/58&@                                                    | (2 marks) |
|     |       |                                                             |           |
| (d) | Solve | the following problems in 2's complement form using 8 bits. |           |
|     |       | 25 <sub>10-</sub> 19 <sub>10</sub>                          |           |
|     |       |                                                             | (6 marks) |

#### **Question 2**





By referring to digital circuit in Figure 1, perform analysis as follows:

- (a) Determine the expression of F.
- (b) Draw the output waveform based on **Figure 2.** (Please answer this question in the **appendix B** and attach together with your answer booklet).



**FLD20403 DIGITAL SYSTEM** 

(5 marks)

#### **Question 3**

(a) Give one example each for combinational logic circuit and sequential logic circuit. State the difference between combinational logic circuit and sequential logic circuit.

(2 marks)

(b) Show the logic circuit and truth table for the **S-R latch**. The truth table should consist of the input (S and R), output (Q and Q') and state of the Latch.

(4 marks)

(c) If the S and R waveforms in Figure 3(a) are applied to the S-R latch, determine the waveform that will be observed on the output, Q, Figure 3(b). Assume that Q is initially LOW. (Please answer this question in the appendix B and attach together with your answer booklet).



(4 marks)

(d) Show the logic circuit and truth table for the J-K flip-flop. The truth table should consist of the input (J and K), output (Q)<sup>(t+1)</sup>) and state of the flip-flop.

(4 marks)

(e) If the clock (CLK), J and K waveforms in Figure 4(a) are applied to the J-K flip-flop, determine the waveform that will be observed on the output, Q, Figure 4(b). Assume that Q is initially LOW. (Please answer this question in the appendix B and attach together with your answer booklet).

(6 marks)



## SECTION B (Total: 40 marks) INSTRUCTION: Answer TWO (2) questions only Please use the answer booklet provided.

#### **Question 4**

For the Schematic drawing in Figure 5 below,

- (a) Write Boolean expression. (4 marks)
  (b) Summarize the Boolean expression of SOP form using Karnaugh map. (10 marks)
  (c) Draw the simplified gates circuit. (4 marks)
- (d) Replace all the gates in the simplified SOP form circuit with NAND gates. (2 marks)



Figure 5

#### **Question 5**

(a) Design a **3 x 8 decoder** used for Binary to Octal conversion by showing the following steps.

| (i)   | Truth Table        |           |
|-------|--------------------|-----------|
|       |                    | (4 marks) |
| (ii)  | Logic circuit      |           |
|       |                    | (3 marks) |
| (iii) | Output expressions |           |
|       |                    | (3 marks) |

(b) Implement the following Boolean functions with two 2 x 4 decoders and a 1 x 2 decoder.

F1 (A, B, C) =∑m (2, 3, 6, 7)

(4 marks)

#### (c) Design a **4 to 1 Multiplexer**. The design should include the following;

| (i)   | Block diagram |           |
|-------|---------------|-----------|
|       |               | (2 marks) |
| (ii)  | Truth table   |           |
|       |               | (2 marks) |
| (iii) | Logic circuit |           |
|       |               | (2 marks) |

#### **Question 6**

(a) List the difference between synchronous and asynchronous counters. (2 marks)
 (b) Refer to block diagram in Figure 6:

 (i) Identify the modulus and the counter type.
 (4 marks)
 (ii) Draw the complete timing diagram for sixteen clock pulses for the counter in part (i), showing the output waveform for Q<sub>0</sub>, Q<sub>1</sub> and Q<sub>2</sub>.
 (14 marks)





#### END OF QUESTION PAPER

FLD20403 DIGITAL SYSTEM

# **APPENDIX A**

## **BOOLEAN THEOREMS**

| 1. | $X \bullet 0 = 0$            | 8. $X + \overline{X} = 1$                   | 14. $X + XY = X$                                  |
|----|------------------------------|---------------------------------------------|---------------------------------------------------|
| 2. | $X \bullet 1 = X$            | 9. $X + Y = Y + X$                          | 15. $X + \overline{X}Y = X + Y$                   |
| 3. | $X \bullet X = X$            | 10. $X \bullet Y = Y \bullet X$             | 16. $\overline{X+Y} = \overline{X} \overline{Y}$  |
| 4. | $X \bullet \overline{X} = 0$ | 11. $X + (Y + Z) = (X + Y) + Z = X + Y + Z$ | 17. $\overline{XY} = \overline{X} + \overline{Y}$ |
| 5. | X + 0 = X                    | 12. $X(YZ) = (XY)Z = XYZ$                   | = 18 $A - A$                                      |
| 6. | X + 1 = 1                    | 13a.X(Y+Z) = XY + XZ                        | 10. A - A                                         |
| 7. | X + X = X                    | 13b.(W+X)(Y+Z) = WY + XY + WZ + XZ          |                                                   |

# ASCII table:

|      | MSBs |        |     |     |       |     |     |     |
|------|------|--------|-----|-----|-------|-----|-----|-----|
| LSBs | 000  | 001    | 010 | 011 | 100   | 101 | 110 | 111 |
| 0000 | NUL  | DLE    | SP  | 0   | 0     | Р   | `   | р   |
| 0001 | SOH  | $DC_1$ | ļ   | 1   | А     | Q   | а   | q   |
| 0010 | STX  | $DC_2$ | **  | 2   | В     | R   | b   | r   |
| 0011 | ETX  | $DC_3$ | #   | 3   | 3 C S |     | С   | s   |
| 0100 | EOT  | $DC_4$ | \$  | 4   | D     | Т   | d   | t   |
| 0101 | ENQ  | NAK    | %   | 5   | Е     | U   | е   | u   |
| 0110 | ACK  | SYN    | &   | 6   | F     | V   | f   | V   |
| 0111 | BEL  | ETB    | •   | 7   | G     | W   | g   | W   |
| 1000 | BS   | CAN    | (   | 8   | Н     | Х   | h   | Х   |
| 1001 | HT   | ΕM     | )   | 9   | I     | Y   | i   | У   |
| 1010 | LF   | SUB    | *   | :   | J     | Z   | j   | Z   |
| 1011 | VT   | ESC    | +   | ;   | K     | [   | k   | {   |
| 1100 | FF   | FS     | ,   | <   | L     | ١   | I   |     |
| 1101 | CR   | GS     | -   | =   | Μ     | ]   | m   | }   |
| 1110 | 0    | RS     |     | >   | Ν     | ۸   | n   | ~   |
| 1111 | SI   | US     | /   | ?   | 0     | _   | 0   | DEL |

## **APPENDIX B**

| Name:         |  |
|---------------|--|
| ID NO:        |  |
| CODE/SUBJECT: |  |
| LECTURER:     |  |

### Question (2b)



Figure 2

### Question (3c)







Figure 4

## Question (6b)



Figure 6

#### Answers

### Question (3c)







Question (3e)

Figure 4

#### Part B

(Q5)

(a)(i)

Design a 3×8 decoder.

| х | у | z | F <sub>0</sub> | F <sub>1</sub> | F <sub>2</sub> | $F_3$ | F4 | $F_5$ | $F_6$ | $\mathbf{F}_{7}$ |
|---|---|---|----------------|----------------|----------------|-------|----|-------|-------|------------------|
| Ō | 0 | 0 | 1              | 0              | 0              | 0     | 0  | 0     | 0     | 0                |
| 0 | 0 | 1 | 0              | 1              | 0              | 0     | 0  | 0     | 0     | 0                |
| 0 | 1 | 0 | 0              | 0              | 1              | 0     | 0  | 0     | 0     | 0                |
| 0 | 1 | 1 | 0              | 0              | 0              | 1     | 0  | 0     | 0     | 0                |
| 1 | 0 | 0 | 0              | 0              | 0              | 0     | 1  | 0     | 0     | 0                |
| 1 | 0 | 1 | 0              | 0              | 0              | 0     | 0  | 1     | 0     | 0                |
| 1 | 1 | 0 | 0              | 0              | 0              | 0     | 0  | 0     | 1     | 0                |
| 1 | 1 | 1 | 0              | 0              | 0              | 0     | 0  | 0     | 0     | 1                |

(4 marks)

(ii and iii)



Logic circuit (4 marks) Logic expression (4 marks)

(5b) Implement the following Boolean functions with a 1 x 2 decoders and two 2 x 4 decoder.

Υ

I<sub>0</sub>

 $I_1$ 

 $I_2$ 

 $I_3$ 

mux

S1 S0

select

F1 (A, B, C) =∑m (2, 3, 6, 7)



#### (Q6) Design a 4 to 1 Multiplexer

Truth table for a 4-to-1 multiplexer:



Q6(b)

(i) The synchronous counter: all flip-flops in the counter is clocked at the same time by a common clock pulse; but
 The asynchronous counter: the flip-flop within the counter do not change at the same time because they do not have a common clock pulse.

(2 marks)

(ii) Modulus 8 (2 marks)

Asynchronous counter

(2 marks)



(14 marks)