CONFIDENTIAL

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2013 SESSION

SUBJECT CODE	:	FEB 10202
SUBJECT TITLE	:	ELECTRICAL PRINCIPLES
LEVEL	:	BACHELOR
TIME / DURATION	:	2 HOURS
DATE	:	

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
- 6. Answer all questions in English.
- 7. Do not open the question paper until instructed to do so

THERE ARE 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.

Question 1

(a) Define:

(i)	Kirchoff's Voltage Law	(2 marks)
(ii)	Kirchoff's Current Law	(2 marks)

(b) Determine the resistance and tolerance limits for each of the following resistor:

(i) Violet, yellow, blue, silver	(2 marks)
(ii) Red, gray, silver, gold	(2 marks)

(c) Determine the voltage across the resistor when a current of 8 A through it converts2000 J of electrical energy into heat energy in 25 s.(3 marks)

Question 2

- (a) A sinusoidal alternating voltage has a peak value of 250 V and a frequency of 50 Hz.
 Determine the angle and time when it first reaches the instantaneous voltage of 200 V
 (6 marks)
- (b) Determine the rms voltage across R₃ (V_{3rms}) in Figure 1 below:

Figure 1

(7 marks)

Question 3

For the circuit in **Figure 2** below, determine:

Figure 2

(i)	Total resistance, (R τ)	(4 marks)
(ii)	Total current, (Is)	(2 marks)
(iii)	Voltage drop across R1 (V1) and R5 (V5)	(4 marks)
(iv)	Current flow through R2 (I2) and R4 (I4)	(4 marks)
(v)	Power delivered by the source, (Ps)	(2 marks)

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only. Please use the answer booklet provided.

Question 4

(a) For the network shown in Figure 3 below, determine the:

(i)	Total capacitance (C τ)	(4 marks)
(ii)	Total charge (Q τ)	(3 marks)
(iii)	Voltage across capacitor C2 (V2)	(4 marks)
(iv)	Charge at capacitor C3 (Q3)	(3 marks)

(b) For the circuit in **Figure 4** below, the capacitor is initially uncharged. Determine the:

Figure 4

(i) Time constant (τ)	(2 marks)
(ii) Time taken for the capacitor to charged to 8V.	(4 marks)

Question 5

(a) Referring to Figure 5 below, calculate the:

(i)Total reactance (XT)(6 marks)(ii)Total rms current (IT)(2 marks)(iii)Total reactive power (Pr)(2 marks)

(b) For the ideal inductor in Figure 6 below, calculate the:

Figure 6

(i)	Time constant (τ)	(2 marks)

- (ii) Final current (IF) (2 marks)
 - The current at t = 25 μ s (3 marks)
- (iv) The current at t = $80 \ \mu s$ (3 marks)

(iii)

Question 6

Referring to Figure 7 below, calculate the:

(a)Total admittance (YT)(4 marks)(b)Total impedance (ZT)(2 marks)(c)Total current (I)(3 marks)(d)Current (I1), (I2) and (I3)(9 marks)(e)Total power factor (PF)(2 marks)

Question 7

(a) Determine each voltage (V1), (V2), (V3) and (V4) as indicated in Figure 8 below:

(8 marks)

Figure 8

(b) For the network in **Figure 9** below, find the:

(i) Reflected resistance at primary winding (Rp)	(4 marks)
(ii) Primary current (Ip)	(2 marks)
(iii) Secondary current (Is)	(2 marks)
(iv) Secondary voltage (Vs)	(2 marks)
(v) Power in the load (PL)	(2 marks)

END OF QUESTION PAPER