UNIVERSITI KUALA LUMPUR

Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2013 SESSION

```
SUBJECT CODE
SUBJECT TITLE
LEVEL
TIME / DURATION : 2 HOURS
DATE :
: FEB }1020
: ELECTRICAL PRINCIPLES
: BACHELOR
```

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
6. Answer all questions in English.
7. Do not open the question paper until instructed to do so

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

(a) Define:
(i) Kirchoff's Voltage Law
(2 marks)
(ii) Kirchoff's Current Law (2 marks)
(b) Determine the resistance and tolerance limits for each of the following resistor:
(i) Violet, yellow, blue, silver
(ii) Red, gray, silver, gold
(c) Determine the voltage across the resistor when a current of 8 A through it converts 2000 J of electrical energy into heat energy in 25 s .

Question 2

(a) A sinusoidal alternating voltage has a peak value of 250 V and a frequency of 50 Hz .

Determine the angle and time when it first reaches the instantaneous voltage of 200 V
(6 marks)
(b) Determine the rms voltage across R_{3} (V_{3} rms) in Figure 1 below:

Figure 1
(7 marks)

Question 3

For the circuit in Figure $\mathbf{2}$ below, determine:

Figure 2

(i)	Total resistance, (RT)	(4 marks)
(ii)	Total current, (Is)	$(2$ marks)
(iii)	Voltage drop across $\mathrm{R}_{1}\left(\mathbf{V}_{\mathbf{1}}\right)$ and $\mathrm{R}_{5}\left(\mathbf{V}_{5}\right)$	$(4$ marks)
(iv)	Current flow through $\mathrm{R}_{2}(\mathbf{I} \mathbf{2})$ and $\mathrm{R}_{4}(\mathbf{I} \mathbf{4})$	(4 marks)
(v)	Power delivered by the source, (Ps)	(2 marks)

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only.
Please use the answer booklet provided.

Question 4

(a) For the network shown in Figure 3 below, determine the:

Figure 3
(i) Total capacitance ($\mathbf{C T}_{\mathbf{T}}$)
(ii) Total charge ($\mathbf{Q T}$)
(iii) Voltage across capacitor $\mathrm{C}_{2}\left(\mathrm{~V}_{2}\right)$
(iv) Charge at capacitor $\mathrm{C}_{3}\left(\mathrm{Q}_{3}\right)$
(b) For the circuit in Figure 4 below, the capacitor is initially uncharged. Determine the:

Figure 4
(i) Time constant (τ)
(ii) Time taken for the capacitor to charged to 8 V .

Question 5

(a) Referring to Figure 5 below, calculate the:

Figure 5
(i) Total reactance (X_{T})
(6 marks)
(ii) Total rms current (IT)
(iii) Total reactive power (Pr)
(b) For the ideal inductor in Figure 6 below, calculate the:

Figure 6
(i) Time constant (τ)
(2 marks)
(ii) Final current (IF)
(2 marks)
(iii) The current at $t=25 \mu \mathrm{~s}$ (3 marks)
(iv) The current at $\mathrm{t}=80 \mu \mathrm{~s}$

Question 6

Referring to Figure 7 below, calculate the:

Figure 7
(a) Total admittance ($\mathrm{Y}_{\mathrm{T})}$
(4 marks)
(b) Total impedance ($\mathbf{Z}_{\mathbf{T}}$)
(c) Total current (I)
(d) Current ($\mathbf{I} \mathbf{1}$), ($\mathbf{I} \mathbf{I}$) and ($\mathbf{I} \mathbf{3}$)
(e) Total power factor (PF)

Question 7

(a) Determine each voltage $\left(\mathbf{V}_{1}\right),\left(\mathbf{V}_{\mathbf{2}}\right),\left(\mathbf{V}_{\mathbf{3}}\right)$ and $\left(\mathbf{V}_{\mathbf{4}}\right)$ as indicated in Figure $\mathbf{8}$ below:

Figure 8
(b) For the network in Figure 9 below, find the:

Figure 9
(i) Reflected resistance at primary winding ($\mathbf{R p}$)
(4 marks)
(ii) Primary current (Ip)
(2 marks)
(iii) Secondary current (Is)
(2 marks)
(iv) Secondary voltage (Vs)
(2 marks)
(v) Power in the load (PL)

END OF QUESTION PAPER

