

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2013 SESSION

SUBJECT CODE	: FEB 1	0103
SUBJECT TITLE	: CIRCL	JIT THEORY
LEVEL	: BACH	ELOR
TIME / DURATION	: 2.5 H	OURS
DATE	:	

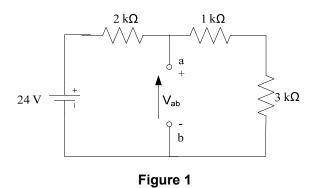
INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) question only.
- 6. Answer all questions in English.
- 7. Do not open the question paper until instructed to do so.

THERE ARE 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

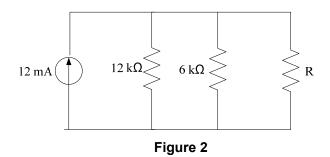
SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.


Question 1

- (a) Define:
 - (i) Kirchhoff's voltage law
 - (ii) Kirchhoff's current law

(4 marks)


(b) Determine the voltage V_{ab} in circuit as shown in Figure 1 using Kirchhoff's voltage law (KVL).

(3 marks)

(c) A resistor of **R** is to be connected in parallel with the circuit as shown in **Figure 2**, so that the current through the 12 k Ω resistor is 2 mA. Determine the value of resistance **R**.

(3 marks)

FEB 10103 CIRCUIT THEORY

Question 2

- (a) An AC voltage can be represented by a sinusoidal waveform. Define:
 - (i) the period, **T**
 - (ii) the frequency, **f**

(4 marks)

- (b) An alternating voltage has the mathematical expression of, v(t) = 169.8 sin 377t V.
 Determine:
 - (i) the angular velocity, $\boldsymbol{\omega}$
 - (ii) the frequency, **f**
 - (iii) the period, **T**
 - (iv) the instantaneous voltage at **t = 3 ms**
 - (v) Plot the graph for **v(t)** versus **t**

(8 marks)

(c) Carbon composition resistors are available with power rating of ¹/₈ W, ¹/₄W, ¹/₂W, 1W and 2W. The circuit values of voltage, current, and/or resistance are given as follows. Determine the minimum power rating that the carbon composition resistor can have.

(i)	R = 1.5 kΩ	l = 20 mA
(ii)	V = 50 mV	I = 0.2 A

(4 marks)

CONFIDENTIAL

Question 3

A series-parallel circuit shown in **Figure 3** is connected to a 10 V voltage source. Calculate:

(a)	The total resistance	
(b)	The total current, I _{T.}	(3 marks)
(0)		(2 marks)
(C)	The current I_{1} and I_{2}	(4 marks)
(d)	The voltage V _{ab}	(4 Шанкэ)

(e) The total power delivered

(3 marks) (2 marks)

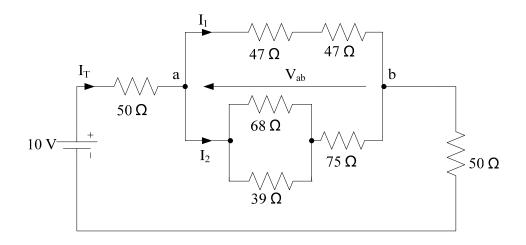
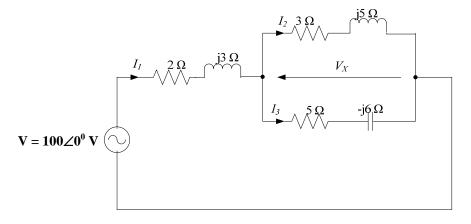


Figure 3

SECTION B (Total: 60 marks)

INSTRUCTION: Answer only THREE (3) questions. Please use the answer booklet provided.


Question 4

A series-parallel circuit as shown in **Figure 4** is connected to 100 volts AC voltage source. Determine:

- (a) The total impedance, Z_T .
- (6 marks) (b) The current, I_1 , I_2 and I_3
- (c) The voltage across parallel branch, $V_{X.}$
- (d) Draw the phasor diagram for V, I_1 , I_2 and I_3 .

(8 marks) (2 marks)

(4 marks)

FEB 10103 CIRCUIT THEORY

Question 5

Figure 5 shows a multi source circuit with a voltage and current source

(a)	Determine the Thevenin's equivalent across the \mathbf{R}_{L} .	
(b)	If the load $\mathbf{R}_{L} = 6 \mathbf{\Omega}$, determine the current through the load.	(14 marks)
(\mathbf{a})	<u> </u>	(3 marks)
(C)		(3 marks)

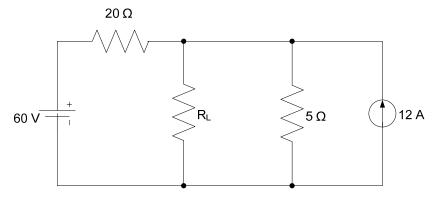


Figure 5

Question 6

A multi-source circuit as shown in **Figure 6** is connected to a current source and a voltage source. Using the superposition theorem, determine:

- (a) The current through R_{2, I_X}
- (b) The voltage across R_{2} , V_{R2}

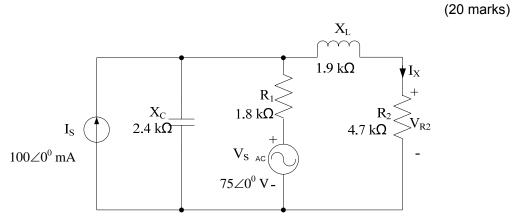


Figure 6

CONFIDENTIAL

Question 7

Figure 7 shows several loads connected to AC voltage source. The load consists of twelve (12) 60 W bulb, a 6.4 kW heating elements, a 5 hp motor (efficiency 82 % and power factor 0.72 lagging) and a capacitive load. Determine:

- (a) The total average power, the total reactive power and the total apparent power. (14 marks)
- (b) The overall power factor.
- (c) The source current.
- (d) Draw the power triangle.

(2 marks)

(2 marks)

(2 marks)

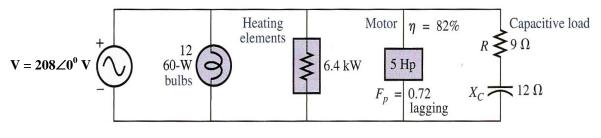


Figure 7

END OF QUESTION PAPER

FEB 10103 CIRCUIT THEORY