Document No : UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION SEPTEMBER 2013 SESSION

SUBJECT CODE : FEB 10102

SUBJECT TITLE : ELECTRICAL FUNDAMENTAL

LEVEL : BACHELOR

TIME / DURATION : 2.5 HOURS

DATE :

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) question only.
- 6. Answer all questions in English.
- 7. Do not open the question paper until instructed to do so.

THERE ARE 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

- (a) Define:
 - (i) Kirchhoff's voltage law
 - (ii) Kirchhoff's current law

(4 marks)

(b) Determine the voltage V_{ab} in circuit as shown in **Figure 1** using Kirchhoff's voltage law (KVL).

(3 marks)

(c) A resistor of $\bf R$ is to be connected in parallel with the circuit as shown in **Figure 2**, so that the current through the 12 k Ω resistor is 2 mA. Determine the value of resistance $\bf R$.

(3 marks)

Question 2

(a) An AC voltage can be represented by a sinusoidal waveform. Define:

- (i) the period, **T**
- (ii) the frequency, f

(4 marks)

- (b) An alternating voltage has the mathematical expression of, $v(t) = 169.8 \sin 377t \text{ V}$. Determine:
 - (i) the angular velocity, ω
 - (ii) the frequency, f
 - (iii) the period, **T**
 - (iv) the instantaneous voltage at **t = 3 ms**
 - (v) Plot the graph for **v(t)** versus **t**

(8 marks)

- (c) Carbon composition resistors are available with power rating of $^{1}/_{8}$ W, $^{1}/_{8}$ W, $^{1}/_{2}$ W, 1W and 2W. The circuit values of voltage, current, and/or resistance are given as follows. Determine the minimum power rating that the carbon composition resistor can have.
 - (i) $R = 1.5 \text{ k}\Omega$ I = 20 mA
 - (ii) V = 50 mV I = 0.2 A

(4 marks)

Question 3

A series-parallel circuit shown in **Figure 3** is connected to a 10 V voltage source. Calculate:

- (a) The total resistance (3 marks)
- (b) The total current, $I_{T.}$ (2 marks)
- (c) The current $I_{1,}$ and I_{2} (4 marks)
- (d) The voltage V_{ab} (3 marks)
- (e) The total power delivered (2 marks)

Figure 3

SECTION B (Total: 60 marks)

INSTRUCTION: Answer only THREE (3) questions.

Please use the answer booklet provided.

Question 4

A series-parallel circuit as shown in **Figure 4** is connected to 100 volts AC voltage source. Determine:

(a) The total impedance, \mathbf{Z}_{T} . (6 marks)

(b) The current, $\mathbf{I_1}$, $\mathbf{I_2}$ and $\mathbf{I_3}$ (8 marks)

(c) The voltage across parallel branch, $\mathbf{V}_{\mathbf{X}}$. (2 marks)

(d) Draw the phasor diagram for V, I_1 , I_2 and I_3 . (4 marks)

Figure 4

Question 5

Figure 5 shows a multi source circuit with a voltage and current source

(a) Determine the Thevenin's equivalent across the R_L .

- (14 marks)
- (b) If the load $R_L = 6 \Omega$, determine the current through the load.

(3 marks)

(c) Calculate the power dissipated through R_L

(3 marks)

Question 6

A multi-source circuit as shown in **Figure 6** is connected to a current source and a voltage source. Using the superposition theorem, determine:

- (a) The current through R_2 , I_X
- (b) The voltage across \mathbf{R}_{2} , $\mathbf{V}_{\mathbf{R}2}$

(20 marks)

Question 7

Figure 7 shows several loads connected to AC voltage source. The load consists of twelve (12) 60 W bulb, a 6.4 kW heating elements, a 5 hp motor (efficiency 82 % and power factor 0.72 lagging) and a capacitive load. Determine:

- (a) The total average power, the total reactive power and the total apparent power. (14 marks)
- (b) The overall power factor.

(2 marks)

(c) The source current.

(2 marks)

(d) Draw the power triangle.

(2 marks)

Figure 7

END OF QUESTION PAPER