MPUR

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION JANUARY 2010 SESSION

SUBJECT CODE

: FKB 15103

SUBJECT TITLE

: ENGINEERING MATHEMATICS 1

LEVEL

: BACHELOR

TIME / DURATION

4.00pm - 6.00pm

(2 HOURS)

DATE

: 27 APRIL 2010

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This questions paper consists of SIX (6) questions. Answer FOUR (4) questions only.
- 6. Answer ALL questions in English.

THERE ARE 4 PAGES OF QUESTIONS AND 7 PAGES OF APPENDIX, EXCLUDING THIS PAGE.

(Total: 80 marks)

INSTRUCTION: Answer only FOUR questions.

Please use the answer booklet provided.

Question 1

The two points (-2,4) and (1,3) lie on a circle with equation in form $x^2 + y^2 + ax + by + c = 0$ where a, b and c are constants.

(a) Find two equations in a, b and c and solve the system of equations by using elementary row operations.

(10 marks)

(b) If (2,2) is also lie on the circle, determine the value of a, b and c by using Cramer's rule. Hence, find the equation of the circle.

(10 marks)

Question 2

Given that (4+j) is a root of the equation $x^3 - 6x^2 + x + 34 = 0$,

- (a) Factorize the cubic expression $x^3 6x^2 + x + 34$ completely in complex domain. (8 marks)
- (b) Hence, decompose in complex domain the following fraction,

$$\frac{1}{x^3 - 6x^2 + x + 34}$$

(12 marks)

Question 3

Given transfer function of a simple amplifier when negative feedback, $\,eta$, is applied is given by

$$T = \frac{A_0 / (1 + j\omega T_1)}{1 + \frac{A_0}{1 + j\omega T_1} \beta (1 + j\omega T_2)}$$

where A_0 is the low frequency gain , ω is the angular frequency, T_1 is the amplifier time constant, T= new transfer function and $T_2=$ feedback time constant.

(a) Show that $T = \frac{A_0}{1 + A_0 \beta + j \omega (T_1 + A_0 \beta T_2)}$

(3 marks)

(b) Find the gain (modulus of T) and phase (argument of T) of the T at an angular frequency $\omega=2\times10^3$ rad/s, $A_0=1000$, $\beta=0.1$, $T_1=0.5\times10^{-3}s$ and $T_2=1\times10^{-4}s$

(7 marks)

(c) A cable has the following constants : $R=10\Omega$, $L=0.1\times10^{-3}H$, $G=1\times10^{-6}$ siemen and $C=1\times10^{-9}$ F . For $\omega=10{,}000$ rad/s, determine the characteristic impedance, $Z_0 \quad \text{where} \quad Z_0 = \sqrt{\frac{R+j\omega L}{G+j\omega C}} \,. \tag{10 marks}$

Question 4

Given a point A with coordinates (3, -1, 5) and a line I with the equation

$$r = 8 i - k + \lambda \left(-6 i + j + 4 k \right).$$

(a) Find the coordinates of a point B on line I if AB is perpendicular to line I.

(7 marks)

Given a plane π_1 with the equation $r = \begin{pmatrix} i - j + 3k \\ \sim \sim \end{pmatrix} = 15$.

(b) Find the coordinates of a point C on / if the line / intersects the plane π_1 .

(5 marks)

(c). Determine the equation of a plane π_2 which contains the points A, B and C.

(8 marks)

Question 5

(a) If $y = \ln(\sin px + \cos px)$, where p is a constant, show that

$$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + p^2 = 0.$$

(13 marks)

(b) Differentiate $y = \tan^{-1} \left(\frac{1-x}{1+x} \right)$ with respect to x.

(7 marks)

Question 6

(a) Evaluate $\int_{1}^{2} (x+1)\sqrt{2-x} dx$ by using a suitable substitution or otherwise.

(7 marks)

(b) (i) Express $f(x) = \frac{x^2 + 7x + 2}{(1 + x^2)(2 - x)}$ in terms of partial fractions.

(6 marks)

(ii) Hence, prove that $\int_{0}^{1} f(x) dx = \frac{11}{2} \ln 2 - \frac{\pi}{4}$

(7 marks)

END OF QUESTION

Table of Differentiation

	Trigonometric Functions - GENERAL FORM
•	$\frac{d}{dx}(\sin f(x)) = f'(x)\cos f(x)$
X =	$\frac{d}{dx}(\cos f(x)) = -f'(x)\sin f(x)$
s	$\frac{d}{dx}(\tan f(x)) = f'(x) \sec^2 f(x)$
•	$\frac{d}{dx}(\csc f(x)) = -f'(x)\csc f(x)\cot f(x)$
	$\frac{d}{dx}(\sec f(x)) = f'(x) \sec f(x) \tan f(x)$
	$\frac{d}{dx}(\cot f(x)) = -f'(x)\csc^2 f(x)$

Exponential Function - GENERAL FORM

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathrm{e}^{\mathrm{f}(x)} \right) = \mathrm{f}'(x) \, \mathrm{e}^{\mathrm{f}(x)}$$

Logarithmic Function - GENERAL FORM

$$\frac{d}{dx}(\ln f(x)) = \frac{1}{f(x)} f'(x)$$

Derivatives of Inverse Trigonometric Functions
$\frac{d}{dx}\left(\sin^{-1}u\right) = \frac{1}{\sqrt{1 - u^2}}\frac{du}{dx} , u < 1$
$\frac{d}{dx}(\cos^{-1}u) = \frac{-1}{\sqrt{1-u^2}}\frac{du}{dx} , u < 1$
$\frac{d}{dx}\left(\tan^{-1} u\right) = \frac{1}{1+u^2}\frac{du}{dx}$
$\frac{d}{dx}\left(\csc^{-1}u\right) = \frac{-1}{\left u\right \sqrt{u^2 - 1}}\frac{du}{dx} , \left u\right > 1$
$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sec^{-1}u\right) = \frac{1}{\left u\right \sqrt{u^2 - 1}}\frac{\mathrm{d}u}{\mathrm{d}x} , \left u\right > 1$
$\frac{d}{dx}\left(\cot^{-1}u\right) = \frac{-1}{1+u^2}\frac{du}{dx}$

Derivatives of Hyperbolic Functions
$\frac{d}{dx}(\sinh u) = \cosh u \frac{du}{dx}$
dx (shift d) = cosh d dx
$\frac{d}{dx}(\cosh u) = \sinh u \frac{du}{dx}$
$\frac{d}{dx}(\tanh u) = \operatorname{sech}^{2} u \frac{du}{dx}$
$\frac{d}{dx}(\operatorname{csch} u) = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$
$\frac{d}{dx}(\operatorname{sech} u) = -\operatorname{sech} u \tanh u \frac{du}{dx}$
$\frac{d}{dx}(\coth u) = -\operatorname{csch}^{2} u \frac{du}{dx}$

Derivatives of Inverse Hyperbolic Functions

$$\frac{d}{dx}\left(\sinh^{-1} u\right) = \frac{1}{\sqrt{1+u^2}}\frac{du}{dx}$$

$$\frac{d}{dx}\left(\cosh^{-1}u\right) = \frac{1}{\sqrt{u^2 - 1}}\frac{du}{dx} , u > 1$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\tanh^{-1} u\right) = \frac{1}{1-u^2}\frac{\mathrm{d}u}{\mathrm{d}x} , \left| u \right| < 1$$

$$\frac{d}{dx} \left(esch^{-1} u \right) = \frac{-1}{|u| \sqrt{1 + u^2}} \frac{du}{dx} , u \neq 0$$

$$\frac{d}{dx} \left(\operatorname{sech}^{-1} u \right) = \frac{1}{u \sqrt{1 - u^2}} \frac{du}{dx}$$
, $0 < u < 1$

$$\frac{d}{dx}\left(\coth^{-1} u\right) = \frac{1}{1-u^2}\frac{du}{dx} , |u| > 1$$

Trigonometric Identities and Formulas

FUNDAMENTAL DEXTRIES

$$csc\theta = \frac{1}{\sin \theta}$$

$$sec\theta = \frac{1}{\cos \theta}$$

$$cot\theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$

$$tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$sin^2\theta + \cos^2\theta = 1$$

$$1 + \tan^2\theta = \sec^2\theta$$

$$1 + \cot^2\theta = \csc^2\theta$$

FORMULAS FOR NEGATIVES

$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\csc(-\theta) = -\csc\theta$$

$$\sec(-\theta) = \sec\theta$$

$$\cot(-\theta) = -\cot\theta$$

ADDITION FORMULAS

$$sin(A + B) = sinAcosB + cosAsinB$$

$$cos(A + B) = cosAcosB - sinAsinB$$

$$tan(A + B) = \frac{tanA + tanB}{1 - tanAtanB}$$

SUBTRACTION FORMULAS

$$sin(A - B) = sinAcosB - cosAsinB$$

 $cos(A - B) = cosAcosB + sinAsinB$
 $tan(A - B) = \frac{tanA - tanB}{1 + tanAtanB}$

HALF-ANGLE FORMULAS

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$$
$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$\tan\frac{\theta}{2} = \frac{1 - \cos\theta}{\sin\theta} = \frac{\sin\theta}{1 + \cos\theta}$$

DOUBLE-ANGLE FORMULAS ...

 $\sin 2\theta = 2\sin\theta \sin\theta$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\dots = 1 - 2\sin^2 \theta$$

$$\dots = 2\cos^2 \theta - 1$$

$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

PRODUCTE TO SUM FORMULAS

$$\sin \alpha \operatorname{in} \alpha c = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

$$\cos \alpha \operatorname{os} \alpha s = \frac{1}{2} \left[\sin(\alpha + \beta) - \sin(\alpha - \beta) \right]$$

$$\cos \alpha \operatorname{os} \alpha c = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$

$$\sin \alpha \operatorname{in} \alpha s = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right]$$

SUMETO PRODUCT FORMULAS

$$\sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$$
$$\sin\alpha - \sin\beta = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$
$$\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$$
$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

Table of Integration

Trigonometric Functions - GENERALFORM

Where:
$$f(x) = ax + b$$

$$\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + C$$

$$\int \sin f(x) dx = \frac{-\cos f(x)}{f'(x)} + C$$

$$\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + C$$

$$\int \sec f(x) \tan f(x) dx = \frac{\sec f(x)}{f'(x)} + C$$

$$\int \csc f(x) \cot f(x) dx = \frac{-\cot f(x)}{f'(x)} + C$$

$$\int \csc^2 f(x) dx = \frac{-\cot f(x)}{f'(x)} + C$$

Exponential Function - GENERALFORM

Where:
$$f(x) = ax + b$$

$$\int e^{f(x)} dx = \frac{e^{f(x)}}{f'(x)} + C$$

Logarithmic Function - GENERALFORM

Where:
$$f(x) = ax + b$$

$$\int \frac{1}{f(x)} dx = \frac{\ln |f(x)|}{f'(x)} + C$$

Integration of Inverse Trigonometric Functions
$$\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + C \quad , \quad |x| < a$$

$$\int \frac{-1}{\sqrt{a^2-x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + C \quad , \quad |x| < a$$

$$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$$

$$\int \frac{-1}{|x|\sqrt{x^2-a^2}} dx = \frac{1}{a} \csc^{-1}\left(\frac{x}{a}\right) + C \quad , \quad |x| > a$$

$$\int \frac{1}{|x|\sqrt{x^2-a^2}} dx = \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right) + C \quad , \quad |x| > a$$

$$\int \frac{-1}{a^2+x^2} dx = \frac{1}{a} \cot^{-1}\left(\frac{x}{a}\right) + C$$

Integration of Hyperbolic Functions

Where
$$f(x) = ax + b$$
 and $f'(x) = a$

$$\int \cosh f(x) dx = \frac{\sinh f(x)}{f'(x)} + C$$

$$\int \sinh f(x) dx = \frac{\cosh f(x)}{f'(x)} + C$$

$$\int \operatorname{sech}^2 f(x) dx = \frac{\tanh f(x)}{f'(x)} + C$$

$$\int \operatorname{csch}^2 f(x) dx = \frac{-\coth f(x)}{f'(x)} + C$$

$$\int \operatorname{sech} f(x) \tanh f(x) dx = \frac{-\operatorname{sech} f(x)}{f'(x)} + C$$

$$\int \operatorname{csch} f(x) \coth f(x) dx = \frac{-\operatorname{csch} f(x)}{f'(x)} + C$$