SET A



## UNIVERSITI KUALA LUMPUR Malaysia France Institute

# FINAL EXAMINATION JANUARY 2010 SESSION

SUBJECT CODE

: FFD 12201

SUBJECT TITLE

METAL FABRICATION PROCESSES

LEVEL -

DIPLOMA

TIME / DURATION

4.00 pm – 6.00 pm

(2 HOURS)

DATE

26 APRIL 2010

#### **INSTRUCTIONS TO CANDIDATES**

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all question in Section A. For Section B, answer four (4) questions only.
- 6. Answer all questions in English.

THERE ARE 9 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

#### Question 1

Stainless steel is a high quality product which is widely used in many applications because of its excellent corrosion resistance.

To achieve good corrosion resistance stainless steels have a minimum addition of 12% of chromium. This results in the formation of an inert, invisible oxide films on the metal surface which prevents corrosion

In addition to corrosion resistance, stainless steels must also be suitable for component manufacture and so have:

- Good forming characteristics.
- Good welding characteristics.

With reference to the above explanations, answer the questions below:

(a) i. List down 5 (five) applications of stainless steel in industries.

(5 marks)

ii. List down 3 (three) properties of metals.

(3 marks)

iii. State the meaning of 'lustre'

(2 marks)

(a) Label the blank space provided for an MMAW process as shown in Figure 1.

(6 marks)

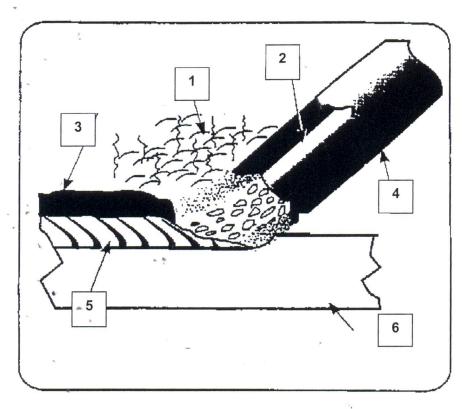



Figure 1 – Manual Metal Arc Welding (MMAW)

- (b) For stainless steel welding there are two main types of electrode coating, they are basic and rutile.
  - i. Provide 2 (two) characteristics of each coating

(4 marks)

(a) The GMAW process is a versatile technique which can be useful for stainless steel welding. Figure 2 shows complete Gas Metal Arc Welding (GMAW) equipment.

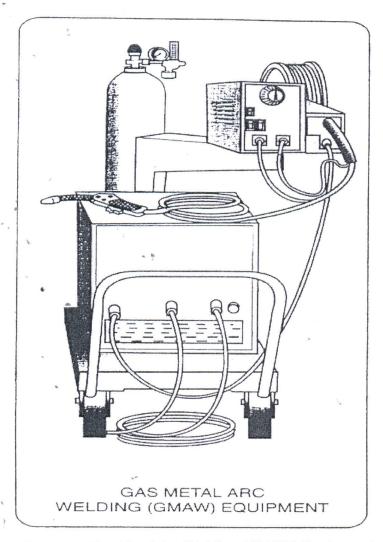



Figure 2 – Gas Metal Arc Welding (GMAW) Equipment

(i) State 2 (two) main differences between GMAW and GTAW.

(4 marks)

(ii) Name the 2 (two) inert gas used as shielding medium in GTAW.

(2 marks)

(iii) State the usage of inert gas in GTAW.

(4 marks)

5. The activity within the sheetmetal field is very great. Sheetmetal applications exist in nearly every aspect of a job. Complete by sketching the process and name the type of industry you can find the activity most, in Table 1

(10 marks)

| Sketch                                 | Industry Type |
|----------------------------------------|---------------|
| i. Riveted joints                      |               |
| ,, , , , , , , , , , , , , , , , , , , |               |
| · ·                                    | ,,            |
|                                        | Industry:     |
| ii. Laser cutting output               |               |
|                                        |               |
| * *,                                   |               |
|                                        |               |
| >                                      | Industry:     |
|                                        |               |
| iii. Parts with stretch flanges        |               |
| iii. Fata Will allaton hangaa          |               |
|                                        |               |
|                                        | Industry:     |
|                                        |               |
|                                        | ×.            |
| iv. Dressing a grinding wheel          |               |
|                                        |               |
|                                        |               |
|                                        |               |
|                                        | Industry:     |
| *                                      |               |
|                                        |               |
| v. Contour rolling                     |               |
|                                        |               |
|                                        | 2             |
|                                        | Industry:     |
|                                        |               |
| * i                                    |               |
|                                        |               |

Table 1

|               |                   | Force, tons, required for punching hole diameters, in., of: |      |      |      |      |      |      |      |      |       |      |       |      |       |      |
|---------------|-------------------|-------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|------|-------|------|-------|------|
| Metal<br>gage | Thickness,<br>in. | 1/8                                                         | 3/16 | 1/4  | 5/16 | 3/8  | 7/16 | 1/2  | 9/16 | 5/8  | 11/16 | 3/4  | 13/16 | 7/8  | 15/16 | 1    |
| 28-           | 0.036             | 0.35                                                        | 0.53 | 0.71 | 0.88 | 1.1  | 1.2  | 1.4  | 1.6  | 1.8  | 1.9   | 2.1  | 2.3   | 2.5  | 2.7   | 2.8  |
| 18            | 0.048             | 0.47                                                        | 0.71 | 0.94 | 1.2  | 1.4  | 1.7  | 1.9  | 2.1  | 2.4  | 2.6   | 2.8  | 3.1   | 3.3  | 3.5   | 3.8  |
| 1/16 or 16    | 0.060             | 0.59                                                        | 0.89 | 1.2  | 1.5  | 1.8  | 2.1  | 2.4  | 2.7  | 2.9  | 3.2   | 3.5  | 3.8   | 4.1  | 4.4   | 4.7  |
| 14            | 0.075             | 0.74                                                        | 1,1  | 1.5  | 1.9  | 2.2  | 2.6  | 2.9  | 3.3  | 3.7  | 4.1   | 4.4  | 4.8   | 5.2  | 5.5   | 5.9  |
| 12            | 0.105             | 1.0                                                         | 1.6  | 2.1  | 2.6  | 3.1  | 3.6  | 4.1  | 4.7  | 5.2  | 5.7   | 6.2  | 6.7   | 7.2  | 7.7   | 8.3  |
| 1/8 or 11     | 0.120             | 1.2                                                         | 1.8  | 2.4  | 3.0  | 3.5  | 4.1  | 4.7  | 5.3  | 5.9  | 6.5   | 7.1  | 7.7   | 8.3  | 8.8   | 9.4  |
| 10            | 0.135             |                                                             | 2.0  | 2.7  | 3.3  | 4.0  | 4.6  | 5.3  | 6.0  | 6.6  | 7.3   | 8.0  | 8.6   | 9.3  | 10.0  | 10.6 |
| 3/16          | 0.187             |                                                             | 2.8  | 3.7  | 4.6  | 5.5  | 6.5  | 7.4  | 8.3  | 9.2  | 10.2  | 11.1 | 12.0  | 12.9 | 13.8  | 14.8 |
| 1/4           | 0.250             |                                                             |      | 4.9  | 6.2  | 7.4  | 8.6  | 9.8  | 11.0 | 12.3 | 13.5  | 14.8 | 16.0  | 17.2 | 18.5  | 19.7 |
| 5/16          | 0.312             |                                                             |      |      | 7.8  | 9.2  | 10.8 | 12.3 | 13.8 | 15.4 | 16.9  | 18.4 | 20.0  | 21.5 | 23.0  | 24.6 |
| - 3/8         | 0.375             |                                                             |      |      |      | 11.1 | 13.0 | 14.8 | 16.6 | 18.5 | 20.3  | 22.1 | 24.0  | 25.8 | 27.7  | 29.5 |
| 1/2           | 0.500             |                                                             |      |      |      | *    | 17.2 | 19.7 | 22.1 | 24.6 | 27.1  | 29.5 | 32.0  | 34.4 | 36.9  | 39.4 |
| 5/8           | 0.625             | ,                                                           |      |      |      |      |      |      |      | 30.8 | 33.8  | 36.9 | 40.0  | 43.0 | 46.1  | 49.2 |
| 3/4           | 0.750             |                                                             |      |      |      |      |      |      |      |      | 40.6  | 44.3 | 48.0  | 51.9 | 55.4  | 59.0 |
| 7/8 -         | 0.875             |                                                             |      |      |      |      |      |      |      |      |       | 51.6 | 56.0  | 60.2 | 64.6  | 69.0 |
| 1             | 1.00              | ¥.                                                          |      |      |      |      |      |      |      |      |       |      | 64.0  | 68.8 | 73.8  | 78.8 |

Table 2 - Required Force for Punching Mild Steel Plate

| Material             | Chart<br>multiplier | Ultimate st<br>Shear | rength, psi<br>Tensile |
|----------------------|---------------------|----------------------|------------------------|
| Aluminum:            |                     | 90 700 10 000        |                        |
| 1100-O               | 0.19                | 9,500                | 13,000                 |
| 1100-H14             | 0.22                | 11,000               | 18,000                 |
| 3003-H14             | 0.28                | 14,000               | 22,000                 |
| 2024-T4              | 0.82                | 41,000               | 68,000                 |
| 5005-H18             | 0.32                | 16,000               | 29,000                 |
| 6063-T5              | 0.36                | 18,000               | 30,000                 |
| 6061-T4              | 0.48                | 24,000               | 35,000                 |
| 6061-T6              | 0.58                | 29,000               | 41,000                 |
| 7075-T6              | 0.98                | 49,000               | 82,000                 |
| Brass, rolled sheet: |                     | 127                  |                        |
| Soft                 | 0.64                | 32,000               | 46,000                 |
| 1/2 hard             | 0.88                | 44,000               | 65,000                 |
| Hard                 | 1.00                | 50,000               | 78,000                 |
|                      | 4 4 60 40           |                      |                        |
| Copper:<br>1/4 hard  | 0.50                | 25,000               | 38,000                 |
| Hard                 | 0.70                | 35.000               | 50,000                 |
| Steel:               |                     |                      |                        |
| Mild A-7 struc-      |                     |                      |                        |
| tural                | 1.00                | 50,000               | 65,000                 |
|                      | 1.10                | 55,000               | 70,000                 |
| Boiler plate         | 1.20                | 60,000               | 85,000                 |
| Structural A-36      | 1 . da ()           | 00,000               | ****                   |
| Structural COR-      |                     |                      |                        |
| TEN (ASTM            | 1.28                | 64,000               | 90.000                 |
| A242)                |                     | 60.000               | 85,000                 |
| Cold rolled C-1018   |                     | 70.000               | 100,000                |
| Hot rolled C-1050    | 1.40                | 110.000              | 150,000                |
| Hot rolled C-1095    | 2.20                | 110,000              | 1.50,000               |
| Hot rolled C-1095,   |                     | 92.000               | 110,000                |
| annealed             | 1.64                | 82,000               | 110,000                |
| Stainless 302.       | a a 2%              | 70.000               | 90,000                 |
| annealed             | 1.40                | 70,000               | 70,000                 |
| Stainless 304.       | 4 425               | 70.000               | 90,000                 |
| cold rolled          | 1.40                | 70,000               | 30,000                 |
| Stainless 316,       |                     |                      | 90,000                 |
| cold rolled          | 1.40                | 70,000               | 50,000                 |

Table 3 - Chart Multiplier

To get the required force for punching a mild steel plate of various thicknesses, you may refer to the table presented in Table 2. To punch materials with different shear strength it is necessary to use a chart multiplier presented in Table 3. By referring to the both chart given, you will be able to calculate the force needed. Calculate the force needed for the following materials

i. Aluminium 6063-T5 :  $\frac{3}{4}$  in. diameter on a  $\frac{1}{4}$  in. thickness

ii. Mild A -7 Structural : 1/4 in. diameter on a 1/4 in. thickness

iii. Stainless 302 annealed: 1/4 in. diameter on a 1/4 in. thickness

iv. Copper  $\frac{1}{4}$  hard :  $\frac{5}{8}$  in. diameter on a  $\frac{1}{2}$  in. thickness

v. Brass soft :  $\frac{1}{2}$  in. diameter on a  $\frac{1}{4}$  in. thickness

(10 marks)

#### Question 6

(a) Shearing is among the most common processes performed in sheetmetal works.
Name the correct operation performed using the same "shearing" principles as shown in Figure 3.

(4 marks)

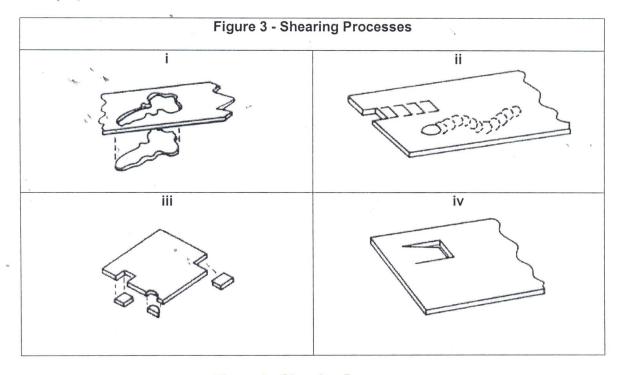



Figure 3 - Shearing Processes

CONFIDENTIAL

- (b) Piercing is one of the operation perform in sheetmetal industries.
  - Determine the type of each piercing operations given in the drawing (as shown in Figure 4).

(3 marks)

ii. Describe its usage.

(3 marks)

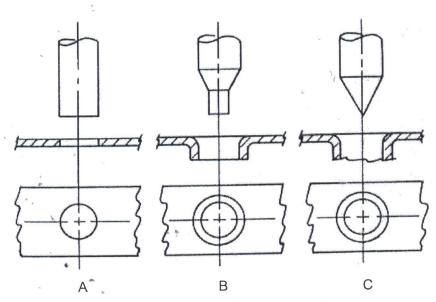



Figure 4 - Types of piercing operations

SECTION B (Total: 40 marks)

INSTRUCTION: Answer any FOUR (4) questions only.

Please use the answer booklet provided.

#### Question 1

- (a) Rolling is the term used for the process employed to produce cylindrical and conical jobs or large radius bends. Rolling is carried out on machines called rolls.
  - i. Name 2 (two) types of roller bending machines.

(2 marks)

ii. Describe each type of roller bending machine

(8 marks)

#### Question 2

- (a) Mechanical properties are of great importance in the design, fabrication and maintenance of structure and machines. Various mechanical tests provide immense value to the engineer, metallurgist, technologist, technician and tradesman.
  - i. Name 4 (four) mechanical properties.

(4 marks)

ii. Describe briefly any 2 (two) of the mechanical properties.

(6 marks)

## Question 3

- (a) Thoriated tungsten electrodes are designed chiefly for direct current electrode negative work and are therefore ideally suited to the welding of stainless steel.
  - i. State 4 (four) advantages of thoriated tungsten electrode compare to other tungsten electrodes.

(4 marks)

ii. Name 2 (two) shielding gases used in the welding of stainless steel.

(2 marks)

iii. State the cylinder color for the 2 (two) shielding gases.

(2 marks)

iv. State the chemical symbol of the 2 (two) shielding gases.

(2 marks)

#### Question 4

- The tooling used in bending operations results in the metal being deformed in localized areas only. The localized stresses occur only in the bend radius. The remaining flat part of the blank is not stressed during bending. To describe further of a bending operation provide the following,
  - i. Illustrate with a diagram showing neutral axis, tension and compression, and no stress line.

(6 marks)

ii. Explain what is meant by a "neutral axis"

(4 marks)

#### Question 5

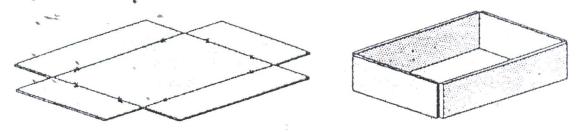



Fig 5 - Utility Box Container

- (a) The diagram above shows a 'utility box container' which is made of mild steel. The thickness of the sheet used for its body is 1.5 mm. The box measures 300 mm X 200 mm. X 100 mm. The 'utility box container' is supposed to have a lid. The pattern layout given may help you. Please prepare the necessary in order to complete the 'utility box container',
  - (i) List down the steps and processes in order to complete the 'utility box container'.

(6 marks)

(ii) Propose the type of lid that you will prepare for the 'utility box container'.

(4 marks)

#### **END OF QUESTIONS**