SET A



# UNIVERSITI KUALA LUMPUR Malaysia France Institute

# FINAL EXAMINATION JULY 2010 SESSION

SUBJECT CODE

: FMB 16303

SUBJECT TITLE

: STRENGTH OF MATERIALS

LEVEL

: BACHELOR

TIME / DURATION

: 9.00am - 11.30am

(2.5 HOURS)

DATE

**12 NOVEMBER 2010** 

### INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
- 6. Answer all questions in English.

THERE ARE 3 PAGES OF QUESTIONS AND 1 PAGE OF FORMULA, EXCLUDING THIS PAGE.

JULY 2010 CONFIDENTIAL

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

### Question 1

A 200-mm long rod has a diameter of 20 mm. If an axial tensile load of 150 kN is applied, determine its change in length. Take Young's Modulus, E = 200 GPa.

(10 marks)

### Question 2

Determine the absolute maximum shear stress in the shaft shown in Fig 1. JG is constant.

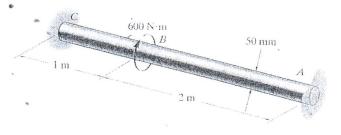



Fig 1

(10 marks)

### Question 3

Determine the absolute maximum bending stress in the beam in Fig 2.

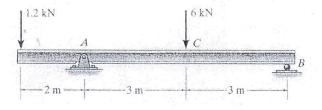



Fig 2

(10 marks)

5

### Question 4

A 100-mm long rod has a diameter of 15 mm. If an axial load of 10 kN is applied to it, determine its change in diameter. Take Young's modulus, E=70 GPa and Poisson's ratio, v=0.35.

(10 marks)

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only.

Please use the answer booklet provided.

#### Question 5

The two rods in Fig 3 support the vertical force of P = 30 kN. Determine the diameter of rod AB if the allowable tensile stress for the material is  $\sigma_{\text{allow}}$  = 150 MPa.

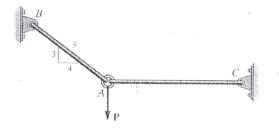



Fig 3



#### Question 6

The beam in Fig 4 is supported by a pin at A and a link BC. Determine the resultant internal shear in the beam at D.

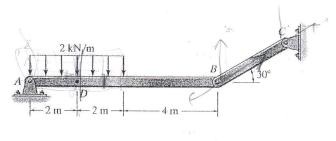



Fig 4

(20 marks)

### Question 7

Determine the shear stress in the beam at point A , which is located at the top of the web as shown in Fig 5.

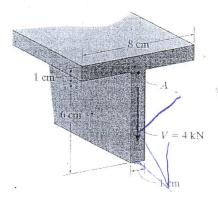



Fig 5

(20 marks)

### Question 8

The column shown in Fig 6 is constructed from concrete and six steel reinforcing rods. If it is subjected to an axial force of 100 kN, determine the force supported by the concrete. Each rod has a diameter of 20 mm. Take E for concrete 30 GPa and E for steel 210 GPa.

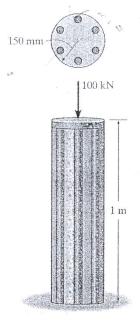



Fig 6

(20 marks)

## **END OF QUESTION**

Formulae

$$\delta = \frac{PL}{AE}$$

$$\hat{\sigma} = \frac{F}{A}$$

$$E = \frac{\sigma}{}$$

$$\sigma = \frac{F}{A}$$

$$E = \frac{\sigma}{\varepsilon}$$

$$\frac{T}{J} = \frac{\tau}{c} = \frac{G\theta}{L}$$

Solid Shaft, 
$$J = \frac{\pi}{2} C^4$$


Tubular Shaft, 
$$J = \frac{\pi}{2} \left( C_2^4 - C_1^4 \right)$$

Bending Stress, 
$$\sigma = \frac{Mc}{I}$$

Moment of Inertia, 
$$I = \frac{1}{12}bh^3$$

Centroid, 
$$\bar{y} = \frac{\sum \bar{yA}}{\sum A}$$

$$I = \sum (\bar{I} + Ad^2)$$

