Document No: UniKL MFI_SD_AC41 Revision No: 02 Effective Date 01 December 2008

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION JULY 2010 SESSION

SUBJECT CODE

FKB 13102 / FKB 14102

SUBJECT TITLE

ENGINEERING MATHEMATICS 1

LEVEL -

BACHELOR

TIME / DURATION

9.00am - 11.00am

(2 HOURS)

DATE

12 NOVEMBER 2010

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of SIX (6) questions. Answer four (4) questions only.
- 6. Answer all questions in English.
- 7. Fomulas are appended.

THERE ARE 6 PAGES OF QUESTIONS AND 7 PAGES OF APPENDIX, EXCLUDING THIS PAGE.

JULY 2010 CONFIDENTIAL

INSTRUCTION: Answer FOUR questions only (Total: 60 marks) Please use the answer booklet provided.

Question 1

(a) If
$$A = \begin{pmatrix} -2 & a & -19 \\ b & -4 & 10 \\ 1 & c & 7 \end{pmatrix}$$
 and $adj(A) = \begin{pmatrix} p & 1 & 4 \\ 3 & q & 1 \\ 1 & 2 & r \end{pmatrix}$, find a , b , c , p , q and r .

(6 marks)

- (b) A square matrix that does not have an inverse is known as singular matrix. If M is the matrix $\begin{pmatrix} 3 & 1 & -3 \\ 1 & 2k & 1 \\ 0 & 2 & k \end{pmatrix}$
 - (i) Find the two values of k if M is a singular matrix.

(3 marks)

(ii) Using the **Cramer's Rule**, solve the equation
$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3\frac{1}{2} \\ 5\frac{1}{2} \\ 5 \end{pmatrix}$$
 in the case when $k=2$

(6 marks)

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION JULY 2010 SESSION

SUBJECT CODE

FKB 13102 / FKB 14102

SUBJECT TITLE

ENGINEERING MATHEMATICS 1

LEVEL

BACHELOR

TIME / DURATION

9.00am - 11.00am

(2 HOURS)

DATE

12 NOVEMBER 2010

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of SIX (6) questions. Answer four (4) questions only.
- 6. Answer all questions in English.
- 7. Fomulas are appended.

THERE ARE 6 PAGES OF QUESTIONS AND 7 PAGES OF APPENDIX, EXCLUDING THIS PAGE.

INSTRUCTION: Answer FOUR questions only (Total: 60 marks) Please use the answer booklet provided.

Question 1

(a) If
$$A = \begin{pmatrix} -2 & a & -19 \\ b & -4 & 10 \\ 1 & c & 7 \end{pmatrix}$$
 and $adj(A) = \begin{pmatrix} p & 1 & 4 \\ 3 & q & 1 \\ 1 & 2 & r \end{pmatrix}$, find a, b, c, p, q and r .

(6 marks)

- (b) A square matrix that does not have an inverse is known as singular matrix. If M is the matrix $\begin{pmatrix} 3 & 1 & -3 \\ 1 & 2k & 1 \\ 0 & 2 & k \end{pmatrix}$
 - (i) Find the two values of k if M is a singular matrix.

(3 marks)

(ii) Using the **Cramer's Rule**, solve the equation
$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3\frac{1}{2} \\ 5\frac{1}{2} \\ 5 \end{pmatrix}$$
 in the case when $k=2$

(6 marks)

(a) Given matrix
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{pmatrix}$$

(i) Find the characteristic polynomial of the matrix A

(2 marks)

(ii) Can you find a 3 by 3 matrix M whose characteristic polynomial is $-\lambda^3 + 17\lambda^2 - 5\lambda + \pi$?

(1 mark)

(b) Look at the spring-mass system as shown in the picture below.

Assume each of the two mass-displacements to be denoted by x_1 and x_2 , and let us assume each spring has the same spring constant k. Then by applying Newton's 2^{nd} and 3^{rd} law of motion to develop a force-balance for each mass we have

$$m_1 \frac{d^2 x_1}{dt^2} = -kx_1 + k(x_2 - x_1)$$

$$m_2 \frac{d^2 x_2}{dt^2} = -k(x_2 - x_1)$$

From the vibration theory, the equations can be rewritten as $A x = \lambda x$

If
$$A = \begin{pmatrix} 2 & -3 \\ 4 & -5 \end{pmatrix}$$

(i) Find det(A) and -tr(A)

(2 marks)

(ii) Show that the characteristic polynomial is $P(\lambda) = \lambda^2 - tr(A)\lambda + det(A)$

(2 marks)

(iii) Find the eigenvalues of the matrix

- (2 marks)
- (iv) Find the eigenvectors corresponding to the eigenvalues in (iii).
- (6 marks)

- (a) In control theory, it is often useful to work with complex numbers in the form $Z=e^{st}$ where s is the complex number $\sigma+j\omega$ and where t, σ and ω are real. The quantity ω is a frequency.
 - (i) Find the real and imaginary parts of Z

(3.5 marks)

(ii) Find |Z|

(0.5 mark)

- (b) The complex numbers Z_1 and Z_2 satisfy the equation $Z^2 = 2 j \ 2\sqrt{3}$
 - (i) Express Z_1 and Z_2 in the form $a+j\,b$, where a and b are real numbers

(5 marks)

(ii) Represent $^{\circ}Z_1$ and Z_2 in an Argand Diagram

(2 marks)

(iii) For each of Z_1 and Z_2 find the modulus and the argument in radians.

(4 marks)

- (a) Consider the polynomial $P(Z) = Z^5 Z^4 + 4Z^3 2Z^2 + 8$ Show that $Z_1 = 1 - j$ and $Z_2 = j2$ are the roots of P(Z)
- (b) A common requirement in control theory is to find the poles of a rational function, G(s). The poles are the values of s that make the denominator zero.
 - (i) Find the poles of the denominator of $G(s) = \frac{3}{s(s^2 + 2s + 5)}$ in the Complex Domain.

(2 marks)

(ii) Hence, decompose G(s) into partial fractions, also in the Complex Domain. (Heaviside Method is recommended)

(7 marks)

(a) If y = UV where $\textbf{\textit{U}}$ and $\textbf{\textit{V}}$ are functions of x, then the derivative of y can be obtained by using the **PRODUCT RULE**, $\frac{dy}{dx} = V \frac{dU}{dx} + U \frac{dV}{dx}$

Given a function $y = e^{-2mx} \sin 4mx$ where m is a constant.

(i) Find the first derivative, $\frac{dy}{dx}$

(2 marks)

(ii) Find the second derivative, $\frac{d^2y}{dx^2}$

(3 marks)

(iii) Hence, show that $\frac{d^2y}{dx^2} + 4m\frac{dy}{dx} + 20m^2y = 0$

(3 marks)

(b) If $\dot{y} = \frac{U}{V}$ where \boldsymbol{V} and \boldsymbol{V} are functions of x, then the derivative of y can be

obtained by using the QUOTIENT RULE, $\frac{dy}{dx} = \frac{V\frac{dU}{dx} - U\frac{dV}{dx}}{V^2}$

(i) Differentiate $F(x) = \frac{\cosh x - 1}{\cosh x + 1}$

(3 marks)

(ii) Hence, find the derivative of $G(x) = \ln\left(\frac{\cosh x - 1}{\cosh x + 1}\right)$

(The following hyperbolic identity may be useful: $\cosh^2 x - \sinh^2 x = 1$)

(4 marks)

(a) A vehicle of mass 500 kg, travelling on a horizontal surface, has its engine working at a constant rate of 10kW against a resisting force of 25v N, where v is the speed in ms⁻¹.

The time taken for the car to increase its speed from 5 ms⁻¹ to 15 ms⁻¹ is given by

$$T = \int_{5}^{15} \frac{20 \, v}{400 - v^2} \, dv$$

Find $\,T$ in seconds by applying the $\it integration$ by $\it substitution$

(5 marks)

(b) (i) By completing the square, prove that $x^2+6\,x+16=Z^2+A^2$. Determine Z and A

(2 marks)

(ii) Hence, determine $\int \frac{1}{2x^2 + 12x + 32} dx$

(3 marks)

(c) By using *Integration by Parts*, determine $\int e^{3x} \sin x \ dx$

(5 marks)

Table of Differentiation

	Trigonometric Functions - GENERAL FORM
	$\frac{d}{dx}(\sin f(x)) = f'(x)\cos f(x)$
	$\frac{d}{dx}(\cos f(x)) = -f'(x)\sin f(x)$
	$\frac{d}{dx}(\tan f(x)) = f'(x) \sec^2 f(x)$
X	$\frac{d}{dx}(\csc f(x)) = -f'(x)\csc f(x)\cot f(x)$
	$\frac{d}{dx}(\sec f(x)) = f'(x) \sec f(x) \tan f(x)$
	$\frac{d}{dx}(\cot f(x)) = -f'(x)\csc^2 f(x)$

Exponential Function - GENERAL FORM

$$\frac{d}{dx} \left(e^{f(x)} \right) = f'(x) e^{f(x)}$$

Logarithmic Function - GENERAL FORM

$$\frac{d}{dx}(\ln f(x)) = \frac{1}{f(x)} f'(x)$$

JULY 2010 CONFIDENTIAL

APPENDIX 2

Derivatives of Inverse Trigonometric Functions
$\frac{d}{dx}\left(\sin^{-1}u\right) = \frac{1}{\sqrt{1 - u^2}}\frac{du}{dx} , u < 1$
$\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos^{-1}u\right) = \frac{-1}{\sqrt{1-u^2}}\frac{\mathrm{du}}{\mathrm{dx}} , \left u\right < 1$
$\frac{d}{dx}(\tan^{-1}u) = \frac{1}{1+u^2}\frac{du}{dx}$
$\frac{d}{dx}\left(\csc^{-1} u\right) = \frac{-1}{\left u\right \sqrt{u^2 - 1}} \frac{du}{dx} , \left u\right > 1$
$\frac{d}{dx}\left(\sec^{-1}u\right) = \frac{1}{\left u\right \sqrt{u^2 - 1}}\frac{du}{dx} , \left u\right > 1$
$\frac{d}{dx}\left(\cot^{-1} u\right) = \frac{-1}{1+u^2}\frac{du}{dx}$

Der	rivatives of Hyp	perbolic Functions	
· ·	$\frac{d}{dx}(\sinh u)$	$= \cosh u \frac{du}{dx}$	
,		$= \sinh u \frac{du}{dx}$	
		$= \operatorname{sech}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$	
:		esch u coth u $\frac{du}{dx}$	e e
		sech u tanh u $\frac{du}{dx}$	
÷	$\frac{d}{dx}(\coth u) =$	$=-\operatorname{csch}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$	

Derivatives of Inverse Hyperbolic Functions

$$\frac{d}{dx}\left(\sinh^{-1} u\right) = \frac{1}{\sqrt{1+u^2}}\frac{du}{dx}$$

$$\frac{d}{dx}\left(\cosh^{-1}u\right) = \frac{1}{\sqrt{u^2 - 1}}\frac{du}{dx} , u > 1$$

$$\frac{d}{dx}\left(\tanh^{-1}u\right) = \frac{1}{1-u^2}\frac{du}{dx} , |u| < 1$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{csch}^{-1} u\right) = \frac{-1}{\left|u\right|\sqrt{1+u^2}} \frac{\mathrm{d}u}{\mathrm{d}x} , \quad u \neq 0$$

$$\frac{d}{dx} \left(\text{sech}^{-1} u \right) = \frac{-1}{u \sqrt{1 - u^2}} \frac{du}{dx}$$
, $0 < u < 1$

$$\frac{d}{dx}\left(\coth^{-1} u\right) = \frac{1}{1-u^2} \frac{du}{dx} , |u| > 1$$

Trigonometric Identities and Formulas

FUNDAMENTAL IDENTITIES

$$csc\theta = \frac{1}{\sin \theta}$$

$$sec\theta = \frac{1}{\cos \theta}$$

$$cot\theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$

$$tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$sin^2\theta + \cos^2\theta = 1$$

$$1 + \tan^2\theta = \sec^2\theta$$

$$1 + \cot^2\theta = \csc^2\theta$$

FORMULAS FOR NEGATIVES

$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\csc(-\theta) = -\csc\theta$$

$$\sec(-\theta) = \sec\theta$$

$$\cot(-\theta) = -\cot\theta$$

ADDITION FORMULAS

$$sin(A + B) = sinAcosB + cosAsinB$$
$$cos(A + B) = cosAcosB - sinAsinB$$
$$tan(A + B) = \frac{tanA + tanB}{1 - tanAtanB}$$

SUBTRACTION FORMULAS

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

HALF-ANGLE FORMULAS

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$$
$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$\tan\frac{\theta}{2} = \frac{1 - \cos\theta}{\sin\theta} = \frac{\sin\theta}{1 + \cos\theta}$$

DOUBLE-ANGLE FORMULAS

$$\sin 2\theta = 2\sin\theta \sin\theta$$

$$\cos 2\theta = \cos^2\theta - \sin^2\theta$$
...... = 1 - 2\sin^2\theta
..... = 2\cos^2\theta - 1
$$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$$

PRODUCT-TO-SUM FORMULAS

$$\begin{aligned} \sin \alpha & \text{in} \alpha c = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right] \\ & \cos \alpha \cos \alpha s = \frac{1}{2} \left[\sin(\alpha + \beta) - \sin(\alpha - \beta) \right] \\ & \cos \alpha \cos \alpha c = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right] \\ & \sin \alpha & \text{in} \alpha s = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right] \end{aligned}$$

SUM-TO-PRODUCT FORMULAS

$$\sin\alpha + \sin\beta = 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}$$
$$\sin\alpha - \sin\beta = 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$
$$\cos\alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}$$
$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$

Integration of Inverse Trigonometric Functions
$$\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + C \quad , \quad |x| < a$$

$$\int \frac{-1}{\sqrt{a^2-x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + C \quad , \quad |x| < a$$

$$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$$

$$\int \frac{-1}{|x|\sqrt{x^2-a^2}} dx = \frac{1}{a} \csc^{-1}\left(\frac{x}{a}\right) + C \quad , \quad |x| > a$$

$$\int \frac{1}{|x|\sqrt{x^2-a^2}} dx = \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right) + C \quad , \quad |x| > a$$

$$\int \frac{-1}{a^2+x^2} dx = \frac{1}{a} \cot^{-1}\left(\frac{x}{a}\right) + C$$

Integration of Hyperbolic Functions Where f(x) = ax + b and f'(x) = a $\int \cosh f(x) dx = \frac{\sinh f(x)}{f'(x)} + C$ $\int \sinh f(x) dx = \frac{\cosh f(x)}{f'(x)} + C$ $\int \operatorname{sech}^2 f(x) dx = \frac{\tanh f(x)}{f'(x)} + C$ $\int \operatorname{csch}^2 f(x) dx = \frac{-\coth f(x)}{f'(x)} + C$ $\int \operatorname{sech} f(x) \tanh f(x) dx = \frac{-\operatorname{sech} f(x)}{f'(x)} + C$ $\int \operatorname{csch} f(x) \coth f(x) dx = \frac{-\operatorname{csch} f(x)}{f'(x)} + C$

JULY 2010 CONFIDENTIAL

APPENDIX 6

Integration of Inverse Hyperbolic Functions
$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \sinh^{-1} \left(\frac{x}{a}\right) + C , a > 0$
$\int \frac{-1}{\sqrt{x^2 - a^2}} dx = \cosh^{-1} \left(\frac{x}{a} \right) + C , x > a$
$\int \frac{1}{a^2 - x^2} dx = \begin{cases} \frac{1}{a} \tanh^{-1} \left(\frac{x}{a}\right) + C, & x < a \\ \frac{1}{a} \coth^{-1} \left(\frac{x}{a}\right) + C, & x > a \end{cases}$
$\int \frac{1}{x\sqrt{a^2 + x^2}} dx = -\frac{1}{a} \operatorname{csch}^{-1} \left(\frac{x}{a}\right) + C , 0 < x < a$
$\int \frac{1}{x\sqrt{a^2 - x^2}} dx = -\frac{1}{a} \operatorname{sech}^{-1} \left(\frac{x}{a}\right) + C , 0 < x < a$

Table of Integration

Where
$$f(x) = ax + b$$
 and $f'(x) = a$

Trigonometric Functions - GENERAL FORM $\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + C$ $\int \sin f(x) dx = -\frac{\cos f(x)}{f'(x)} + C$ $\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + C$ $\int \csc^2 f(x) dx = -\frac{\cot f(x)}{f'(x)} + C$ $\int \sec f(x) \tan f(x) dx = \frac{\sec f(x)}{f'(x)} + C$ $\int \csc f(x) \cot f(x) dx = -\frac{\csc f(x)}{f'(x)} + C$

Exponential Function - GENERAL FORM

$$\int e^{f(x)} dx = \frac{e^{f(x)}}{f'(x)} + C$$

Logarithmic Function - GENERAL FORM

$$\int \frac{1}{f(x)} dx = \frac{\ln|f(x)|}{f'(x)} + C$$