Document No: UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

SET B

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION JULY 2010 SESSION

SUBJECT CODE

FTD 12102

SUBJECT TITLE

METALLURGY

LEVEL

DIPLOMA

TIME / DURATION

4.00 pm - 6.00 pm

(2 HOURS)

DATE

14 NOVEMBER 2010

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of FIVE (5) questions. Answer FOUR (4) questions only.
- 6. Answer all questions in English.

THERE ARE 3 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

JULY 2010 CONFIDENTIAL

INSTRUCTION: Answer FOUR (4) questions only.

Question 1

(a) Explain the general process of performing penetration hardness testing.

(10 marks)

(b) In steel processing, there are two basic steps involved. Describe the process to produce pig iron in a blast furnace. Picture will be an advantage.

(15 marks)

Question 2

(a) A Brinell hardness measurement using a 10mm diameter indenter and 500kg load, produces an indentation of 1.8mm on the sample. Calculate Brinell Hardness Number (BHN).

(5 marks)

(b) Why Silicon is considered as one of the important elements in carbon steel?

(5 marks)

(c) Identify THREE (3) important areas in the Complete Solid Solution Phase Diagram.

(15 marks)

Question 3

(a) Gold forms a FCC structure and has an atomic radius of 1.44 Å. Calculate the volume of its unit cell.

(6 marks)

(b) Define the meaning of quenching and list down each type of quenching starting from Phase 1 to Phase 2. Then, briefly describe the process involved in Phase 1.

(15 marks)

(c) Compare and contrast between covalent and ionic bonding.

(4 marks)

Question 4

- (a) Refer Fig 1. Answer following question.
 - (i) State specifically the name of the above test.

FTD 12102 METALLURGY

21

- (ii) What are the function of load cell and extensometer.
- (iii) List down the information or data produced by the above test.

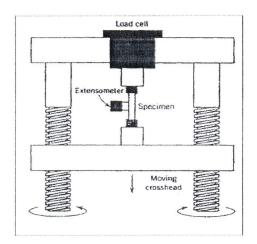


Figure 1: Mechanical test

(10 marks)

(b) Calculate the Vickers hardness number (VHN) for metal if the indentation cause by 50 kg is 1.5 mm for d1.

(5 marks)

(c) Draw a Complete Solid Solution Phase Diagram and show the important points in the diagram.

(10 marks)

Question 5

(a) Calculate the radius of a vanadium (V) atom, given that V has a BCC crystal structure, a density of 5.96 g/cm³, and an atomic weight of 50.9 g/mol.

(6 marks)

(b) List down FOUR (4) factors that influencing corrosion.

(4 marks)

(c) By referring to Figure 2, describe the phenomena of failure associated and explain the needs of insulation.

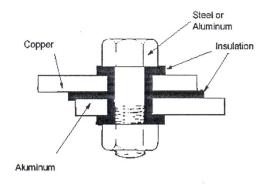


Figure 2: Failure of component

(15 marks)

END OF QUESTION

0 2 He 4,0026	10 Ne 20.183	18 Ar 39 048	36	83.80	54	Xe	131.30	98	년 등	(337)		17	174.97	103	33	(257)	
NI N	9 F 18,998	17 Cl 35.453	35	79.97	53		126.90	88	¥	5		20	Yb 173.04	102	ž	(254)	
N N	8 0 15.999	16 S 32.064	34	Se 78.96	52	Те	127.60	₩ 4	P0	(5) (7)		69	Tm 168.93	101	Md	(256)	
× ×	7 N 14.007	15 P 30.974	33	AS 74.922	22	ds.	121.75	83	. IB .	08.007		68	Er 167.26	100	Fm	(253)	
Ν	6 C 12.011	74 Si	32	Ge 72.59	20	Sn	118.69	85	PD - 257 157	R 1.707		67	Ho 164.93	56	Es	(254)	
¥	5 B 10.811	13 Al 26.982	31	Ga 69.72	49	드	114.82	20	T 200	104.37		99	Dy 162,50	8,	t	(249)	
		<u> </u>	30	Zn 65.37	43	8	112.40	8	Hg See	80°007		සිය	Tb 158.92	16	益	(247)	
[2]	diate	<u>ai</u>	29	Cu 63,54	47	PP PP	107.87	70	Au 10e 62	180.81		5	Gd 157.25	96	Cm	(247)	
Metal Nonmetal	Intermediate		28	Z F	46	Pd	106.4	ç0 	# 18 8 P	80.08		63	Eu 151.96	95	Am	(243)	
		₹	27	58,933	45	듄	102.91	100	C C C C C	132.2		62	Sm 150.35	\$P.69	R	(242)	
. . .			26	55.847	44	Ru	101.07	36	2000	180.7	·9 ₄	50	145)	88	£	(237)	
Atomic number Symbol	- Atomic weight	<u> </u>	28	Mn 54,938	43	ပ	(68)	165 F~	, Re	7.001		8	Nd 144,24	92	\supset	238.03	
Atomic Symbol	/ Atom	<u> </u>	24	CT 51.996	42	Mo	95,94	74	W 400	00.00		20.00	140.91	15	Pa	(231)	
Key Cu A		ğ	23	V 50.942	41	£	92.91	73	Ta	08/08/		58	Ce 140.12	Ů6	Th	232.04	
		ă	22	T 47 90	40	12	91,22	22	Hf 470 45	20 20 20 20 20 20 20 20 20 20 20 20 20 2		ro Fo	La 138,91	68	AC	(227)	
		<u>α</u>	21	Sc 44 056	39	>-	88.91	Rare	earth	Sel les	Acti- nide series		series		series		
¥	4 Be 9.0122	12 Mg		Ca 40 08	38	ঠ	87.62	56	Ba	137.34	Ra (226)		Rare earth series		Actinide series		
A - H 0000	3 Li 6.939	11 Na 22 000	10	30 102	37	윲	85,47	25	SS	132.91	87 Fr (223)		L				

CONFIDENTIAL
$APF = (n)(\frac{4\pi r^3}{3})(\frac{1}{a^3})$
$\rho = \frac{nA}{V_c N_A}$
$N = \frac{N_A \rho}{A}$
$N_{\nu} = N \exp(\frac{-Q}{kT})$
$a_{fcc} = \frac{4r}{\sqrt{2}}$
$a_{bcc} = \frac{4r}{\sqrt{3}}$
$a_{sc} = 2r$
$D = D_o \exp(\frac{-Q_d}{RT})$
$m_{\alpha} phase = \frac{m_{\beta} - m_{x}}{m_{\beta} - m_{\alpha}} xTotal Mass$
$m_{\beta} phase = rac{m_x - m_{lpha}}{m_{eta} - m_{lpha}} xTotal Mass$
$m_L phase\% = \frac{m_s\% - m_x\%}{m_s\% - m_{L\%}} x100$

$$m_L phase\% = \frac{m_s\% - m_x\%}{m_s\% - m_{L\%}} x100$$

$$m_{s} phase\% = \frac{m_{x}\% - m_{L}\%}{m_{s}\% - m_{L\%}} x100$$

$$\rho_{\alpha} = \frac{100}{\frac{C_{A(\alpha)}}{\rho_{A}} + \frac{C_{B(\alpha)}}{\rho_{B}}}$$

$$\rho_{\beta} = \frac{100}{\frac{C_{A(\beta)}}{\rho_{A}} + \frac{C_{B(\beta)}}{\rho_{B}}}$$

$$V_{\alpha} = \frac{\frac{m_{\alpha}}{\rho_{\alpha}}}{\frac{m_{\alpha}}{\rho_{\alpha}} + \frac{m_{\beta}}{\rho_{\beta}}}$$

$$V_{\beta} = \frac{\frac{m_{\beta}}{\rho_{\beta}}}{\frac{m_{\alpha}}{\rho_{\alpha}} + \frac{m_{\beta}}{\rho_{\beta}}}$$

$$\sigma = \frac{F}{A_o}$$

$$\varepsilon = \frac{\Delta l}{l_o}$$

$$E = \frac{\sigma}{\varepsilon}$$

%elongation =
$$\frac{\Delta l}{l_o}$$
 x100%.

% area reduction =
$$\frac{\Delta A}{A_o} x 100\%$$

$$BHN = \frac{\pi D}{2} (D - \sqrt{D^2 - d^2})$$

$$VHN = \frac{1.85F}{d^2}$$