

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION JANUARY 2011 SESSION

SUBJECT CODE

FAD30203

SUBJECT TITLE

CONTROL ENGINEERING

LEVEL

: DIPLOMA

TIME / DURATION

: 9.00am - 12.00pm

(3 HOURS)

DATE

10 MAY 2011

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer TWO (2) questions only.
- 6. Answer all questions in English.
- 7. Semi-log paper and formula is appended

THERE ARE 7 PAGES OF QUESTIONS AND 3 PAGES OF APPENDICES, EXCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer all the questions. Please use the answer booklet provided.

Question 1

(a) Define and give the example of open-loop and closed-loop control system.

(4 marks)

Figure 1: Water sprinkler system

(b) Consider the diagram in **Figure 1** state the system open-loop or closed-loop control system and give explanation for your answer.

(3 marks)

(c) Draw the block diagram for Question 1 (b).

(3 marks)

(d) Give two (2) examples of feedback control systems in which a human acts as a controller.

(2 marks)

(e) Determine the overall gain of positive feedback closed-loop system if the forward gain and feedback gain are given by 50 and 5 respectively.

(3 marks)

Question 2

(a) Reduce the block diagram of a system shown in **Figure 2** to a single block representing the transfer function, $TF(s) = \frac{C(s)}{R(s)}$.

(12 marks)

Figure 2 : Block Diagram.

Obtain the transfer function, TF(s) if $G_1(s) = 1$, $G_2(s) = 2$, $G_3(s) = 1$, $G_4(s) = 2$, $G_3(s) = 1$, $G_4(s) = 1$.

(3 marks)

Question 3

(a) Define and give an application of PID controller.

(2 marks)

(b) Derive the transfer function of PID controller.

(4marks)

Figure 3: PID controller with plant module system

(c) Based on **Figure 3** find the overall transfer function of the system when the PID controller is connected in series with the plant module.

(6 marks)

(d) List the characteristic of P, I and D controller.

(3 marks)

Question 4

(a) List and draw four (4) types of transient responses.

(4 marks)

(b) Define impulse function.

(2 marks)

(c) Sketch the impulse functions of $\delta(t-1.50)$ and $\delta(t-0.10)$.

(2 marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only.

Please use the answer booklet provided.

Question 5

Figure 5 shows the 2 tanks connected in series that fluid level in downstream tank does not affect the fluid-level dynamics of the upstream tanks.

Figure 5: Noninteracting tanks

Variables used:

 z_1 = fluid level in the upstream tank (1)

 z_2 = fluid level in the upstream tank (2)

 q_0 = fluid flow rate into tank 1

 q_1 = fluid flow rate out of tank 1 and into tank 2

 q_2 = fluid flow rate out of tank 2

 R_1 = resistance of the tank 1 outlet

 R_2 = resistance of the tank 2 outlet

(a) Define noninteracting tanks.

(2 marks)

(b) Find the transfer function; $\frac{Z_1(s)}{Q_0(s)}$ of tank 1.

(5 marks)

(c) Find the transfer function; $\frac{Z_2(s)}{Q_1(s)}$ of tank 2.

(5 marks)

(d) Find the overall transfer function; $\frac{Z_2(s)}{Q_0(s)}$ of tank 1 and tank 2 when the tanks arranged in series.

(8 marks)

Question 6

Figure 6: Underdamped response case of second-order

Consider the transient response of second-order system shows in Figure 6.

(a) Determine the following by referring to the plot of the transient response:

i.	delay time (T_d)		(2 marks)
ii.	rise time (T_r)		(2 marks)
iii.	settling time (T_s) of 2% criteria	*	(2 marks)
iv.	maximum overshoot		(2 marks)
V.	steady state error		(2 marks)

(b) Determine the damping ratio (ξ), delay time (T_d), rise time (T_r) and settling time (T_s) of the system with the natural frequency, ω_n =10 kHz via calculation. (**Hint**: refer to appendix 3)

(10 marks)

Question 7

(a) Draw a Bode plot of the unity feedback system shown in **Figure 7**. (14 marks)

Figure 7: The unity feedback system

Where
$$G(s) = \frac{20K}{s(s+2)(s+60)}$$
 and K=12

(b) From the Bode plot, determine the following:

i.	gain margin, GM	(1 mark)
ii.	phase margin, PM	(1 mark).
iii.	gain cross over frequency, ω_{gco}	(1 mark)
iv.	phase cross over frequency, $\omega_{\it pco}$	(1 mark)
• •		

(c) Give your comment on the stability. (2 marks)

END OF QUESTION

APPENDIX 1: BLOCK DIAGRAMS

1. Cascading Blocks:

2. Blocks in parallel: Forward Loop

3. Moving the summing ahead of the block:

4. Moving the summing beyond the block:

5. Moving the takeoff point ahead of a block:

6. Moving the takeoff point beyond a block:

APPENDIX 2: TABLE OF LAPLACE TRANSFORMS

	Time domain f(t)	Laplace domain F(s)
1	Unit impulse $\delta(t)$	1
2	Unit Step Function $u(t)$	$\frac{1}{2}$
	0 1 1 -	$\frac{\overline{s}}{s}$
3	Constant K	S
4	t	$\frac{1}{s^2}$
5	t^2	$\frac{2!}{s^3}$
6	$\frac{t^2}{2!}$	$\frac{1}{s^2}$ $\frac{2!}{s^3}$ $\frac{1}{s^3}$
7	t^n	$\frac{n!}{s^{n+1}}$
8	$\frac{t^{n-1}}{n!}$	$\frac{1}{s^n}$
9	e^{-at}	1
10	$t \cdot e^{-at}$	$\frac{1}{(s+a)^2}$
11	$\frac{t^2e^{-at}}{2!}$	$\frac{1}{(s+a)^3}$
12	$\frac{t^{n-1}e^{-at}}{n-1!}$	$\frac{1}{(s+a)^n}$
13	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
14	cosωt	$\frac{s}{s^2 + \omega^2}$
15	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
16	$\frac{1}{a^2} \left(at - 1 + e^{-at} \right)$	$\frac{1}{s^2(s+a)}$
17	$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right)$	$\frac{1}{(s+b)(s+a)}$
18	$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
19	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$

APPENDIX 3: FORMULAS

1	$T_r \approx \frac{1 - 0.4167\xi + 2.917\xi^2}{\omega_n}$	
2	$T_d \approx \frac{1.1 + 0.125\xi + 0.469\xi^2}{\omega_n}$	
3	$T_s \approx 4T = \frac{4}{\xi \omega_n}$, if 2% of final value $T_s \approx 3T = \frac{3}{\xi \omega_n}$, if 5% of final value	
4	$\%OS = \frac{c_{\text{max}} - c_{\text{final}}}{c_{\text{final}}} \times 100$	
5	$\xi = \frac{-\ln(\%OS/100)}{\sqrt{\pi^2 + \ln^2(\%OS/100)}}$	٨