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INSTRUCTION: Answer FOUR questions only (Total: 60 marks)

Please use the answer booklet provided.

Question 1

Matrix Ais given as follows.

2 1 3
A=14 2 5
5 3 6

(a) What is the size of matrix A ?

(b)  What is the element a,, ?

(c) Calculate the minor for element 6.
(d) Calculate the cofactor for element in row 2 column 3.
(e)  What are the elements in the leading diagonal of matrix A ?

()  Show that det(A)=1

(9) Find the adjoint matrix for matrix A |

CONFIDENTIAL

(1 Mark)

(1 mark)

(1 mark)
(2 marks)
(1 mark)

(2 marks)

(4 marks)

(h) Using part (f) and (g) above, solve the following system of linear equations.

2x+y+3z=2
4x +2y+5z=1

SX +3y+672=3
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Question 2
5 4 2
A matrix operator is definedas A=| 4 5 2
2 2 2
(a) Calculate the characteristic polynomial P(X) for matrix A (2 marks)

(b) By using the calculator, find X, , &, and X,, the eigenvalues of matrix A

(1 mark)
-1 -1
(c) Show that 1 and | 0 are the eigenvectors of matrix A and state the
0 2
corresponding eigenvalues. (2 marks)
(d) Using the Gauss Elimination method, find the third eigenvector. (5 marks)

(e) Without computation, find a diagonal matrix D that is similar to matrix A and

matrix P such that P'AP=D. Prove that the inverse of matrix P exist (without

calculating the inverse itself) (3 marks)

The trace of an n-by-n square matrix A, denoted by tr (A) is defined to be the sum of the
elements on the leading diagonal.

(f) Show that U‘(A) =3, A, + A, (2 marks)
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Question 3
- . d :
(a)  Use implicit differentiation to find d_y at point (3,2) for xy +2x? =3y* +12
X
(4 marks)
(b) ()  Find the derivative of f(x)=ax” +bx +c, where a, band ¢ are constants.
(1 mark)
} . o (r-2) . :
(if) The function H(r) is defined as H(r)= . The derivative of this
(2r +1)
function is QH = . (r = 2)(ar h b) . Determine the value of a, b and n.
dr (2r +1)°
(4 marks)
(i) Find the third derivative of g(x): 3—2x (2 marks)
(¢)  Find fx V2x+1dx by Substitution (4 marks)
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Question 4

3
(a) A rational function is defined as h—i————.
(x - 1)(X - 2)

(1) Use the Euclidien Division to find the quotient and the remainder. Hence,

write your result in the following form.

Dividend . Remainder
—— = Quotient + ———
Divisor Divisor
(3 marks)
(i) Use the result found in (i) to decompose X into partial fractions.
(X - 1)(X - 2)
(3 marks)
4 X}
(iii) Hence, evaluate J—————dx (4 marks)
-1 -2) |
e!
(b) A function G(t) is defined as G(t): = lr
e+
()  Find jG(t) dt by Substitution (3 marks)
. 1 ¢!
(i) Show that ———=1-—— (1 mark)
» e +1 e +1
. 1
(i) Hence, find |——dt (1 mark)

e' +1
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Question 5

A polynomial of degree 3 is defined by P(Z):Z3 ~3Z*+9Z+13

(a) Show that P(Z —i3): 0 and give your conclusion. (3 marks)
(b)  Factorize P(Z) completely. (4 mark)
(c) Find all the roots when P(Z): 0. (1 mark)

7 +1
Z5 37 97 +153

A rational fraction is defined by F(Z)=

(d) Use the result found in (b) to decompose F(Z) into partial fractions. The Heaviside

Method is recommended. (7 marks)
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Question 6
: _— 3-12 :
(a) Q) Simplify a = 5 into x+1y form (2 marks)
2™
(i) Express the complex number, a found in part (a) into the exponential form,
re’ (2 marks)
(i) Using the result found in part (b), solve the equation Z* = a expressing the
solution in exponential form. Show the results on the Argand Diagram.
(4 marks)
(b) A second degree equation is defined as iZ° + (1 -1 S)Z -1+i8=0

Show that the discriminant for the given equationis §* =8—-i6
(1 mark)

(i)

(i) Find the roots of the discriminant, §, and 6, in part (a) (4 marks)
-b+d
: (2 marks)
2a

Solve the given equation, where Z, =

(iii)

END OF QUESTION
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APPENDIX 1 - Trigonometric Identities and Formulas

entalIdenties | | Formulas For Negativ

1

csch = ——

sin®

sech = ——

cosH
. 1 _ C?SB
tan® sin6

sin 6

tan 0 =
cos 0

sin’0 + cos’0 = 1
1 + tan’0 = sec’0
1+ cot’0 = csc’0

sin(~0) = —sin0
cos(—0) = cos0
tan(-6) = —tand
cse(—6) = —csc

sec(—0) = sech
cot (— 0)=—cot0

Addition Formulas

Subtraction Formulas

sin(A + B) = sinAcosB + cosAsinB
cos(A + B) = cosAcosB — sinAsinB
tanA + tanB

tan(A " B) h 1 — tanAtanB

sin(A - B) = sinAcosB — cosAsinB
cos(A — B) = cosAcosB + sinAsinB
tanA — tanB

tan(A-B)= ——m—+—
an( ) 1+ tanAtanB

Half-Angle Formulas

Double-Angle Formulas

sin% =t I——Ml —eas

Vo2

0 1+ cosd
cos—==, [——
2 2

sin20 = 2sinOsinO

c0s20 = cos*0 —sin’0

.......... =1-2sin’0

A R — = 2cos’0 -1

0 " 1-cosO sind 2tand
tan — = — = tan20 = ————
2 sinf 1+ cosO 1 —tan"0

Product-To-Sum Formulas

Sum-To-Product Formulas

sina cosP = %[sin(a +B)+sin(a—p)]

cosasinf} = %[sin((x +P)—sin(o - B)}
cosacosf = ~[cos(a +B)+ cos(a - B)]

sina sinf} =

[cos(a —B)—cos(a+ B)]

=0
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. . N O =
sing + sinf = 2sin = B<:os b
: : g 4p . f—
sino. — sinf = 2cos 5 b sin b

o+ o—
cosa + cosP = 2cos i cos b

+

.o .
cosd — cosP = —2sin——sin

o-p
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APPENDIX 2 — Table of Differentiation
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| i(sin f(x)) =f '(x)cosf(x)

dx

9 (eostle))—=F1{)sintl)

dx

%(tan f(x)) =i ’(x)sec2 f(x)

;3 (esef(x))=—f"(x)escf(x)cot £(x)

dx

2 e B see flhian i)

dx

d (cotf(x))=—f"(x)esc? £(x)

dx

3 (sinhU) :coshUd—U

dx dx
i(coshU) =sinh U L

dx dx

i(tanh U) =sech? Ud*U

dx dx
—d—(csch U) =—cschUcothU i!
dx dx
j{_ (Sech U) ~—sechUtanhU d_[{
dx dx
i (cothU) =—csch?U ﬂ

dX dX

d _ dU
a;(sm IU):m& 5 'U[<1
d ( _ ) -1 dU
—I\cos" U)= — U'<1
dx J1=1U? dx
d . 1 dU
E&(m 1U):HU2 dx
d . —-1 dU
&CSLIU):}U‘ g g |U|>1
g 1 du
a;(sec 1U)~'U[ Uz_ﬂ& [UI 1
. =1 dld
o U o
{ lnversererbohc v
L1 (sin}fl U)z -
dx 14+ U? dx
d ( . 1 dU
—[cosh™ U)= —— , U»l
dx JU? =1 dx
;(tanhl U):1 1U7%9 . |ul<t
% -U- dx
d -1 dU
—osch™ T U=0
dx(csc [) ’U‘r-_l+U2 i #
d ( P —1 dU
—\sech U)z e . Bl ]
dx Uyi-u? dx
L (oth ' U)=—L 1 y)s
dx 1-U" dx

Exponenti’é"l*; Fu«nctionf

Natural LogarlthmlcFunctlon

i (eﬂ_.\ )) 7 ,(X)ef(x)

dx
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APPENDIX 3 — Table of Integration
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jsecz f(x)d tanf(x)+c J.—l—dx :ltan‘](§)+C
f'(x) a’+x’ a a
fcsczf(x)d . f(x)+C _[ - dX:lCSC](EJ‘FC . x’>a
£'(x) |x|[Vx* -a’ o a
sec f(x) 1 I (x
Jsecf(x)tan £ )d = +C j dx =—sec™ |~ [+C 'X'>a
£'(x) |x|[Vx? -a’ 2 -
JCSL f(x)cot f( )d ... f(x) e & j = dx = —‘COtl(ij‘FC
f'(x) a® +x’ a a
Hyperbollc Functions .
Where f(x)=ax+b
Jcosh t‘(x)( X.= E]}Ef( ) +C —/; dx =sinh™ ij +C , a>0
( ) | va© +x a
. 4 s _cosh f(x) X
h f(x)dx e = =
jsxm () () f\/. dx cosh aj%»C , X>a
Isechzt( )dx = anhf(x) J . : - dx:ltanh‘1 £)+C , |x|<a
f (X) a —x" a a
_{csch2 f(x)dx = COt‘h f(x)+ C J - ] iR = lcoth*‘ §j+ C
- f '(x) a4 =% a a
j%uh f(x)tanh f( )dx = —se‘c:h f(x) +C J‘—*l; dx = —lcsch (3) +€ ; O<x<4
£'(x) xva’ +x’ a a
Jcsch f(x)coth f(x)dx = CSC‘h f(x) +C .. e (—%) +C , 0O<x<a
1U(X) x+va® —x? a a
Exponential Function Form L i f(X): b
Where f(x)‘:‘ax+b e e
f(x)
1‘(\)d e L 1 p :lnlf(x)1 c
R g™ v
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