SET B



# UNIVERSITI KUALA LUMPUR Malaysia France Institute

# FINAL EXAMINATION JANUARY 2011 SESSION

SUBJECT CODE

: FKD 22302

SUBJECT TITLE

**MATHEMATICS FOR TECHNOLOGISTS 3** 

LEVEL

DIPLOMA

TIME / DURATION

12.30pm - 2.30pm

(2 HOURS)

DATE

07 MAY 2011

#### INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- Please write your answers on the answer booklet provided.
- 3. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer TWO (2) questions only.
- 5. Answer all questions in English.
- 7. Fomula is appended.

THERE ARE 4 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 30 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

#### Question 1

Find all first partial derivatives of 
$$z = \sqrt{x^2 + y^2}$$
 .

(6 marks)

#### Question 2

Evaluate 
$$\int_{1}^{3} \int_{0}^{1} y(1+4xy) dx dy$$

(7 marks)

#### Question 3

Points D (1, 4, -7), E (2, -1, 4) and F (0, 2, -3) form a triangle,

a) find the angle between  $\overrightarrow{ED}$  and  $\overrightarrow{EF}$ 

(4 marks)

b) find the area of triangle DEF.

- (2 marks)
- c) determine and state whether  $\overrightarrow{ED}$  and  $\overrightarrow{EF}$  are perpendicular or not.
- (1 mark)

#### Question 4

The data set are given as below:

4, 7, 11, 8, 2, 1, 1, 4, 4, 7

a) Find the median of this data set.

(1 marks)

b) Determine the mode and range.

(2 marks)

c) Find the mean of the data.

(2 marks)

#### Question 5

D E T E R M I N A T I O N

A card is picked randomly from the cards above. Find the probability of getting a card with

a) letter N

(1 mark)

b) letter E

(1 mark)

c) letter T or I

(2 marks)

d) letter L and R

(1 mark)

SECTION B (Total: 20 marks)

INSTRUCTION: Answer only <u>TWO</u> questions.

Please use the answer booklet provided.

#### Question 1

A survey was done in a company to find out whether or not the staffs have a *facebook* account. The following table summarizes the responses.

|            | YES (Y) | NO (N) |
|------------|---------|--------|
| Male (M)   | 500     | 100    |
| Female (F) | 250     | 150    |

If a person is selected at random, find the probability that the person

| a) | has a facebook account.                                  | (1 mark)  |
|----|----------------------------------------------------------|-----------|
| b) | is a female.                                             | (1 mark)  |
| c) | has no facebook account given that the person is a male. | (1 mark)  |
| d) | is a male or has a facebook account.                     | (2 marks) |
| e) | is a male and has no facebook account.                   | (1 mark)  |
| f) | is a female or has no facebook account.                  | (2 marks) |
| g) | has a facebook account or has no facebook account.       | (1 mark)  |
| h) | is a female given that the adult has a facebook account. | (1 mark)  |

#### Question 2

- a) If  $\mathbf{a} = -\mathbf{i} 2\mathbf{j} + \mathbf{k}$  and  $\mathbf{b} = 3\mathbf{i} + 5\mathbf{j} 7\mathbf{k}$ .
  - i) Find 2a 3b .

(3 marks)

ii) Find the unit vector for 2a - 3b

(1 mark)

- b) Let u = 3i + 5j 7k and v = 4i 3j 2k. Show that
  - i)  $u \times v = -(v \times u)$

(5 marks)

ii)  $(\mathbf{u} \times \mathbf{v}).\mathbf{u} = 0$ 

(1 mark)

#### Question 3

Table 1 below shows the frequency distribution of the yearly rainfall (in cm<sup>2</sup>) for a 30-year period.

| Yearly rainfall    |         |         |         |         |         |         |         |
|--------------------|---------|---------|---------|---------|---------|---------|---------|
| (cm <sup>2</sup> ) | 28 – 30 | 31 - 33 | 34 - 36 | 37 - 39 | 40 - 42 | 43 - 45 | 46 - 48 |
| 1                  |         |         |         |         |         |         |         |
| No. of years       | 3       | 5       | 8       | 3       | 4       | 5       | 2       |

 a) Copy and complete the following frequency distribution table below in your answer booklet. (5 marks)

| CLASS    | CLASS    |           | CUMMULATIVE |
|----------|----------|-----------|-------------|
| INTERVAL | BOUNDARY | FREQUENCY | FREQUENCY   |
|          |          |           |             |
|          |          |           |             |
|          |          |           | A. T. T.    |
|          |          |           |             |
|          |          |           |             |
|          |          |           |             |
|          |          |           |             |

- b) Draw a histrogram (in the graph paper provided) and find the mode. (2.5 marks)
- c) Draw an ogive (in the graph paper provided) and find the median.

(2.5 marks)

#### **END OF QUESTION**

#### Table of Differentiation

#### Trigonometric Functions – GENERAL FORM

$$\frac{d}{dx}(\sin f(x)) = \cos f(x) \times f'(x)$$

$$\frac{d}{dx}(\cos f(x)) = -\sin f(x) \times f'(x)$$

$$\frac{d}{dx}(\tan f(x)) = \sec^2 f(x) \times f'(x)$$

$$\frac{d}{dx}(\csc f(x)) = -\csc f(x)\cot f(x) \times f'(x)$$

$$\frac{d}{dx}(\sec f(x)) = \sec f(x)\tan f(x) \times f'(x)$$

$$\frac{d}{dx}(\cot f(x)) = -\csc^2 f(x) \times f'(x)$$

#### **Exponential Function - GENERAL FORM**

$$\frac{d}{dx} \left( e^{f(x)} \right) = e^{f(x)} \times f'(x)$$

### Logarithmic Function - GENERAL FORM

$$\frac{d}{dx}(\ln f(x)) = \frac{f'(x)}{f(x)}$$

#### Table of Integration

# Trigonometric Functions - GENERAL FORM

Where: 
$$f(x) = ax + b$$

$$\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + C$$

$$\int \sin f(x) dx = \frac{-\cos f(x)}{f'(x)} + C$$

$$\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + C$$

Where: 
$$f(x) = ax + b$$

$$\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + C$$

$$\int \sin f(x) dx = \frac{-\cos f(x)}{f'(x)} + C$$

$$\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + C$$

$$\int \sec f(x) \tan f(x) dx = \frac{\sec f(x)}{f'(x)} + C$$

$$\int \csc f(x) \cot f(x) dx = \frac{-\cos f(x)}{f'(x)} + C$$

$$\int \csc^2 f(x) dx = \frac{-\cot f(x)}{f'(x)} + C$$

$$\int \csc f(x) \cot f(x) dx = \frac{-\csc f(x)}{f'(x)} + C$$

$$\int \csc^2 f(x) dx = \frac{-\cot f(x)}{f'(x)} + C$$

## **Exponential Function - GENERAL FORM**

Where: 
$$f(x) = ax + b$$

$$\int e^{f(x)} dx = \frac{e^{f(x)}}{f'(x)} + C$$

# Logarithmic Function - GENERAL FORM

Where: 
$$f(x) = ax + b$$

$$\int \frac{1}{f(x)} dx = \frac{\ln |f(x)|}{f'(x)} + C$$