

UNIVERSITI KUALA LUMPUR

FINAL EXAMINATION JANUARY 2011 SESSION

SUBJECT CODE

WQD 10102

SUBJECT TITLE

TECHNICAL MATHEMATICS I

LEVEL

: DIPLOMA

TIME / DURATION

2.00 pm - 4.30 pm

(2.5 HOURS)

DATE

03 MAY 2011

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of THREE (3) parts. Part A, B and C. Answer all questions in Part A and B. For Part C, answer two (2) questions only.
- 6. Answer all questions in English.

THERE ARE 7 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

PART A (Total: 15 marks)

MULTIPLE CHOICE QUESTIONS

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

- 1. Without using calculator, determine the value of $\log_x 1$.
 - A. 1
 - B. 0
 - C. 2
 - D. x
- 2. Determine the value of $16^{\frac{1}{4}} \times 25^{\frac{1}{2}} \div 4^{-2}$.
 - A. 10
 - B. 16
 - C. 160
 - D. $\frac{5}{8}$
- 3. Express $2\log_7 2x + \log_7 x$ as a single logarithm.
 - A. $\log_7 4x^3$
 - B. $\log_7 2x^3$
 - C. $\log_7 2x^2$
 - D. $\log_7 4x$
- 4. If -2x+6=4x-2, determine the value of x.
 - A. 0
 - B. 3
 - C. $\frac{1}{2}$
 - D. $\frac{4}{3}$

- 5. If cd = 3d + e ad, express d in term of a, c and e.
 - A. $d = \frac{e}{c 3 + a}$
 - B. $d = \frac{e}{c 3 a}$
 - C. $d = \frac{a}{c+3-e}$
 - D. $d = \frac{a}{c 3 + e}$
- 6. If $\frac{-(3x-1)}{3} = \frac{x+8}{5}$, then x is equal to:
 - A. $\frac{19}{18}$
 - B. $-\frac{19}{18}$
 - C. $\frac{12}{21}$
 - D. $-\frac{12}{21}$
- 7. Determine the factors of $2x^2 + x 21 = 0$.
 - A. (2x-7)(x+3)
 - B. (x+7)(2x-3)
 - C. (x-7)(2x+3)
 - D. (2x+7)(x-3)
- 8. Solve $x^2 3x = 0$.
 - A. 3 ·
 - B. 0 and -3
 - C. 0 and 3
 - D. 3

9.
$$3\begin{bmatrix} -3 & 2 \\ 4 & -1 \end{bmatrix} - \begin{bmatrix} 5 & -2 \\ 4 & -6 \end{bmatrix} =$$

- A. $\begin{bmatrix} -8 & 4 \\ 0 & 10 \end{bmatrix}$
- B. $\begin{bmatrix} 5 & 7 \\ 3 & 10 \end{bmatrix}$
- C. $\begin{bmatrix} 8 & -9 \\ 12 & -3 \end{bmatrix}$
- D. $\begin{bmatrix} -14 & 8 \\ 8 & 3 \end{bmatrix}$
- 10. Let $f(x) = 3x^3 + 5x + 13$ and $g(x) = 3x^3 + 5x + 1$, determine g(x) f(x).
 - A. -6
 - B. -12
 - C. 12
 - D. 4
- 11. Identify the hypotenuse, adjacent side and opposite side in the following Figure 1 for angle *y*.

- A. AB = Adjacent side, BC = Opposite side and <math>AC = Hypotenuse side.
- B. AB = Opposite side, BC = Hypotenuse side and AC = Adjacent side.
- C. AB = Adjacent side, BC = Hypotenuse side and <math>AC = Opposite side.
- D. AB =Opposite side, BC =Adjacent side and AC =Hypotenuse side.

- 12. Determine the possible angle between the range of $0^{\circ} < \theta < 360^{\circ}$ for this trigonometry equation, $\cos \theta = -0.6428$.
 - A. $\theta = 50^{\circ}$, 310°
 - B. $\theta = 50^{\circ}$, 130°
 - C. $\theta = 130^{\circ}$, 310°
 - D. $\theta = 130^{\circ}, 230^{\circ}$
- 13. Write the equation $z = \sqrt{-12} + \sqrt{4}$ in complex number form.
 - A. -12 + 2i
 - B. $2-2\sqrt{3}i$
 - C. $2 + 2\sqrt{3}i$
 - D. -12i + 2
- 14. The expression $(3-7i)^2$ is equivalent to
 - A. -40 + 0i
 - B. -40-42i
 - C. 58 + 0i
 - D. 58 + 42i
- 15. Given $z = -2 + 8i^3$, determine the complex conjugate of z.
 - A. $\bar{z} = -2 + 8i$
 - B. z = 2 + 8i
 - C. $\bar{z} = -2 8i$
 - D. z = 2 8i

PART B (Total: 45 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

Solve $5^{2x-1} = 12^x$.

[4 marks]

Question 2

Solve the following equations:

a)
$$4(s+1)=3(2s-1)$$

b)
$$\frac{3}{t-2} = \frac{4}{3t+4}$$

[5 marks]

Question 3

Solve $\frac{x+2}{4} + \frac{3}{x-1} = 7$ using quadratic formula

[5 marks]

Question 4

- . .a) Show that (x+2) is a factor of $f(x) = 6x^3 + 13x^2 4$. Hence, factorize f(x) completely.
 - b) Given $P(x) = 2x^3 + 4x^2 x + 3$ and $Q(x) = 3x^2 + x 1$ determine i. P(-2)
 - ii. P(x)Q(x)

[10 marks]

Question 5

Given
$$A = \begin{bmatrix} -1 & 4 \\ 6 & -5 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix}$.

- a) Determine 2A B.
- b) Verify that $(AC)^T = C^T A^T$.

[10 marks]

Question 6

A boy was playing two kites; each with the length of string is different. The kites string make an angle 60° and 35° . If the high of the both kites from the boy is 45 m, how far apart are the kites (x)?

Figure 1

[5 marks]

Question 7

Given A = 5 - 7i and B = -3 + 5i. Determine:

- a) $\overline{A-B}$
- b) AB

[6 marks]

PART C (Total: 40 marks)

INSTRUCTION: Answer TWO questions.
Please use the answer booklet provided.

Question 1

Given the system of equations:

$$x + y + z = 2$$
$$x - 3y + 2z = -5$$
$$2x + y - z = -1$$

- a) Write the system into matrix form.
- b) Solve the system by using Cramer's rule.

[20 marks]

Question 2

- a) The quadratic equation $x^2 + 4x + 13 = p(2-x)$ has real and equal roots. Calculate the values of p.
- b) Given that (x-2) is a factor of f(x), where $f(x) = ax^3 10x^2 + bx 2$, and when f(x) is divided by (x-3), its remainder is 16. Determine the values of a and b. [20 marks]

Question 3

If $Z_1 = 7 + 2i$ and $Z_2 = 1 - 7i$, what is the total impedance Z if these are connected in parallel where $Z = \frac{Z_1 Z_2}{Z_1 + Z_2}$. Express the impedance in polar and exponential form.

[20 marks]

END OF QUESTION