

UNIVERSITI KUALA LUMPUR MATHEMATICS CENTRAL COMMITTEE

FINAL EXAMINATION MARCH 2025 SEMESTER

COURSE CODE

: WQD10203

COURSE NAME

: TECHNICAL MATHEMATICS 2

PROGRAMME NAME

(FOR MPU: PROGRAMME LEVEL)

: DIPLOMA OF ENGINEERING TECHNOLOGY

DATE

: 24 JUNE 2025

TIME

: 09:00 AM - 11:30 AM

DURATION

: 2 HOURS AND 30 MINUTES

INSTRUCTIONS TO CANDIDATES

- 1. Please CAREFULLY read the instructions given in the question paper.
- 2. This question paper has information printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections.
- 4. Answer ALL questions in Section A and TWO (2) questions in Section B.
- 5. Please write your answers on the answer booklet provided.
- 6. Answer all questions in English language ONLY.
- 7. Formula sheet is appended for your reference.

THERE ARE 7 PAGES OF QUESTIONS, EXCLUDING THESE COVER PAGES.

SECTION A (Total: 60 marks)

Instructions: Answer ALL questions.

Please use the answer booklet provided.

Question 1

Given $f(x) = \sqrt{2x-4}$, g(x) = 2x + 5 and k(x) = x - 3. Determine:

(a) g(x)-k(x).

(2 marks)

(b) $(g \circ k)(x)$.

(4 marks)

(c) $f^{-1}(x)$.

(4 marks)

Question 2

(a) Determine the limit for the following function:

i.
$$\lim_{x\to 1} \frac{x^2-4}{x+1}.$$

(2 marks)

ii.
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{1 - x^2}.$$

(4 marks)

(b) Given the graph in Figure 1.

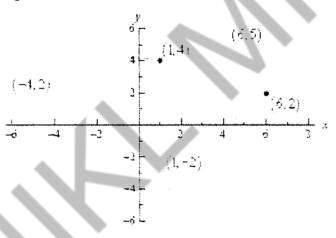


Figure 1

Compute the following:

i.
$$\lim_{x \to -4^-} f(x)$$

(1 mark)

ii.
$$\lim_{x\to 1^-} f(x).$$

(1 mark)

iii.
$$\lim_{x\to 6} f(x).$$

(1 mark)

iv.
$$f(6)$$
.

(1 mark)

Question 3

Differentiate the following functions:

(a)
$$y = 6x^5 + 2e^{4x} + \sin 5x$$
.

(3 marks)

(b)
$$y = (3x^2 + 8x)^3$$
.

(3 marks)

(c)
$$y = (2x-1)^4 \sqrt{x}$$
.

(4 marks)

Question 4

(a) Differentiate the logarithm function, $y = \ln x + \ln(x^3 + 2x)$.

(3 marks)

- (b) Given the curve, $g(x) = x^3 6x^2 + 12x 19$. Determine:
 - i. the gradient of the curve, g'(x).

(3 marks)

ii. the coordinate of the point when g'(x) = 0.

(4 marks)

Question 5

Determine:

(a)
$$\int \frac{2}{3x+4} \, dx$$

(2 marks)

(b)
$$\int \frac{4}{e^{4x}} dx$$

(3 marks)

(c)
$$\int_{1}^{2} x^{2} + 1 dx$$

(5 marks)

Question 6

Solve the following:

(a) $\int \frac{3x}{x^2 + 1} dx$ by using substitution method.

(5 marks)

(b) $\int xe^{3x} dx$ by using integration by parts method.

(5 marks)

MARCH 2025 CONFIDENTIAL

SECTION B (Total: 40 marks)

Instructions: Answer TWO (2) questions only.

Please use the answer booklet provided.

Question 1

(a) By using implicit differentiation, calculate the gradient of the tangent line for the function $x^2 + xy - y^2 = 1$ at point (2, 3).

(10 marks)

(b) Based on Figure 2, determine the area of the shaded region R.

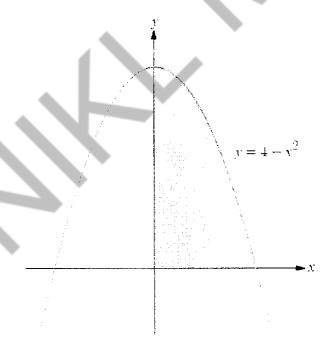


Figure 2

(10 marks)

MARCH 2025 CONFIDENTIAL

Question 2

(a) Figure 3 shows a cuboid metal slab with a width of x meter, length 2x meter and height 2 meter. When heated, the width expanded at the rate of $0.01mh^{-1}$.

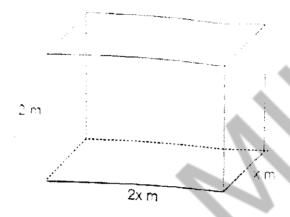


Figure 3

Determine the rate of change of the surface area when the volume is $36 \, m^3$.

(10 marks)

(b) Solve $\int \frac{8}{3x^2-4-4x} dx$ by using partial fraction method.

(10 marks)

MARCH 2025 CONFIDENTIAL

Question 3

- (a) Given a function of $f(x) = \frac{1}{x^3} + (3x + 4)^2 \sqrt{x}$.
 - i. Determine f'(x).

(6 marks)

ii. Based on your answer in (a) i.. calculate f'(1) and f'(4)

(4 marks)

(b) Figure 4 shows R is the region bounded by the line y = x + 3 and the curve $y = x^2 + 1$.

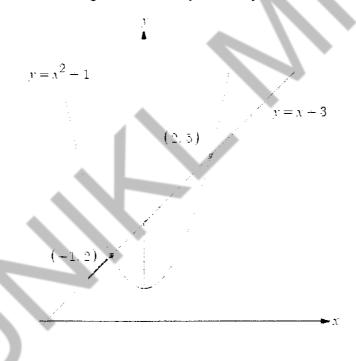


Figure 4

Calculate the volume of the solid generated by rotating R about the x-axis.

(10 marks)

END OF EXAMINATION PAPER

i

FORMULA SHEET

DIFFERENTIATION

TRIGONOMETRIC FUNCTION		
$\frac{d}{dx}(\sin f(x)) = [\cos f(x)] \cdot f'(x)$	$\frac{d}{dx}(\csc f(x)) = \left[-\csc f(x) \cot f(x)\right] \cdot f'(x)$	
$\frac{d}{dx}(\cos f(x)) = [-\sin f(x)] \cdot f'(x)$	$\frac{d}{dx}(\sec f(x)) = [\sec f(x) \tan f(x)] \cdot f'(x)$	
$\frac{d}{dx}(\tan f(x)) = \left[\sec^2 f(x)\right] \cdot f'(x)$	$\frac{d}{dx}(\cot f(x)) = \left[-\csc^2 f(x)\right] \cdot f'(x)$	

EXPONENTIAL FUNCTION	LOGARITHMIC FUNCTION
$\frac{d}{dx}e^{f(x)} = \left[e^{f(x)}\right] \cdot f'(x)$	$\frac{d}{dx}\ln f(x) = \left[\frac{1}{f(x)}\right] \cdot f'(x)$

INTEGRATION

TRIGONOMETRIC FUNCTION Where: $f(x) = ax + b$	
$\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + c$	$\int \sec f(x) \tan f(x) dx = \frac{\sec f(x)}{f'(x)} + c$
$\int \sin f(x) dx = \frac{-\cos f(x)}{f'(x)} + c$	$\int \csc f(x) \cot f(x) dx = \frac{-\csc f(x)}{f'(x)} + c$
$\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + c$	$\int \csc^2 f(x) dx = \frac{-\cot f(x)}{f'(x)} + c$

EXPONENTIAL FUNCTION Where: $f(x) = ax + b$	RECIPROCAL FUNCTION Where: $f(x) = ax + b$
$\int e^{f(x)} dx = \frac{e^{f(x)}}{f'(x)} + c$	$\int \frac{1}{f(x)} dx = \frac{\ln f(x) }{f'(x)} + c$

FORMULA SHEET

INTEGRATION

DEFINITE INTEGRAL $\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$

$$\int u \, dv = uv - \int v \, du$$

AREA UNDER CURVE	AREA BETWEEN CURVES
$A = \int_{a}^{b} f(x) dx$	$A = \int_{a}^{b} f(x) - g(x) dx$

VOLUME (SOLIDS OF REVOLUTION)	VOLUME OF TWO CURVES
$V = \pi \int_{a}^{b} [f(x)]^{2} dx$	$V = \pi \int_{a}^{b} [f(x)]^{2} - [g(x)]^{2} dx$