

Biocatalysis and Agricultural Biotechnology

Volume 54, November 2023, 102946

Harnessing the potential of *Heterotrigona itama* propolis: An overview of antimicrobial and antioxidant properties for nanotechnology–Based delivery systems

Afzan Mahmad ^{a b}, Lee Suan Chua ^{a c} △ ☒, Teh Ubaidah Noh ^c, Chee Kiong Siew ^d, Lay Jing Seow ^e

Show more ✓

https://doi.org/10.1016/j.bcab.2023.102946 A
Get rights and content A

Highlights

- *Heterotrigona itama* propolis possesses antimicrobial and antioxidant properties.
- Propolis is rich in <u>bioactive compounds</u>, especially polyphenolics and terpenoids.
- Antioxidant propolis is mainly contributed by <u>flavonoids</u> and phenolics.
- Antimicrobial propolis could be attributed to <u>flavonoids</u> and terpenoids.
- Propolis is potentially developed into nano-based system for better therapeutic function.

Abstract

Propolis which is derived from the <u>stingless bee</u> species of *Heterotrigona itama* is primarily found in Southeast Asia. It is rich in phenolics including <u>flavonoids</u> and <u>tannins</u> for many applications. This review delves into studies reporting the characterization of H. itama propolis, including its physicochemical analyses, antimicrobial and antioxidant activities, focusing on its future use in nanotechnology-based delivery systems. Studies revealed a complex profile of bioactive compounds, encompassing fatty acids, phenols, steroids, terpenoids, and other groups. Various extraction techniques, such as ultrasound-assisted extraction, maceration, Soxhlet, and liquid-liquid partition using different solvents, have been employed to extract propolis. Each method offers advantages in enhancing the quality of propolis extract for the phenolics, <u>flavonoids</u>, tannins, and antimicrobial and antioxidant capacity. The potential of *H. itama* propolis in nanotechnology-based delivery systems has focused on the <u>nutraceutical</u> delivery. Various nanoscale platforms such as <u>nanoemulsion</u> and nanoemulgel could demonstrate remarkable potential for the delivery of active compounds in propolis, to combat systemic microbial diseases. The exploration of *H. itama* propolis–based delivery systems within the framework of nanotechnology can comprehensively elucidate the applicability, versatility, and potential performance of the systems in the realm of health sciences while embracing the unique taste of propolis.

Graphical abstract