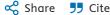


Groundwater for Sustainable Development


Volume 21, May 2023, 100925

Research paper

Response surface methodology and artificial neural network for prediction and validation of bisphenol a adsorption onto zeolite imidazole framework

 $\underline{\text{Afzan Mahmad}} \ ^{a \ b}, \underline{\text{Zakariyya}} \ \text{Uba Zango} \ ^{a \ c} \overset{\lozenge}{\sim} \ \boxtimes \ , \text{Teh Ubaidah Noh}^{\ d}, \text{Fahad Usman}^{\ c}, \text{Osamah A. Aldaghri}^{\ e} \overset{\varrho}{\sim} \ \boxtimes \ ,$ Khalid Hassan Ibnaouf ^e, Maizatul Shima Shaharun ^a

Show more ✓

https://doi.org/10.1016/j.gsd.2023.100925 7 Get rights and content ↗

Highlights

- ZIF-8 for bisphenol A adsorption from wastewater
- RSM optimization for bisphenol A adsorption
- ANN validation for the bisphenol adsorption
- ZIF-8 is possible for regeneration and reusability.

Abstract

Zeolite imidazole frameworks (ZIFs) have demonstrated good capacity in the adsorption of molecules. This work reported the highly porous ZIF-8 with a specific Bruner-Emmett-Teller (BET) area and pore volume of 1299 m²/g and $0.60 \,\mathrm{m}^3/\mathrm{g}$, respectively, for the effective removal of bisphenol A (BPA) from the aqueous medium. The experiments were designed using response surface methodology (RSM), according to Box-Behnken design (BBD), comprising four factors; BPA concentrations, ZIF-8 dosages, pH, and contact time. The model fitting was justified by the analysis of variance with the statistical model F and p-values of 6.360 and 0.0007, respectively, thus, achieving the highest removal efficiency of 99.93%. The artificial neural network (ANN) was employed for the experimental validation, and the optimum topography was obtained at node 10. Thermodynamically, the process was described as exothermic and spontaneous, with overall changes of enthalpy (ΔH°) and entropy (ΔS°) of 9.557kJ/mol and 0.0142J/mol/K, respectively. The ZIF-8 has demonstrated good reusability for several adsorption cycles. Thus, ZIF-8 could be adopted as potential material for BPA removal from the environmental waters.

Graphical abstract