

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINEERING TECHNOLOGY

FINAL EXAMINATION SEPTEMBER 2016 SEMESTER

COURSE CODE

: LGB 12203

COURSE NAME

: MATHEMATICS 1

PROGRAMME NAME

: BACHELOR

DATE

: 23 JANUARY 2017

TIME

: 9.00 AM - 12.00 PM

DURATION

: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper has information printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections; Section A and Section B.
- 4. Answer ALL questions in Section A. For Section B, answer THREE (3) questions only.
- 5. Please write your answers in the answer booklet provided.
- 6. Answer all questions in English.
- 7. Answers should be written in blue or black ink except for sketching, graphic and illustration.

THERE ARE 7 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

SEPTEMBER 2016 (SET 1)

CONFIDENTIAL

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

Given that p and q are roots of the quadratic equation $x^2 - 6x + h = 0$, whereas 3p and 3q are roots of the quadratic equation $3x^2 + wx - 2 = 0$. Identify the possible values of h and w. (8 marks)

Question 2

Given that matrix $A = \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$. Compute:

(a)
$$A^2$$
.

(2 marks)

(b) the values of m and n such that $A^2 + mA + nI = 0$ (I is the 2×2 identity matrix, and 0 is the 2×2 null matrix).

(6 marks)

Question 3

Calculate the following in terms of a+jb:

(a)
$$2j(j-1) + (\sqrt{3}+j)^2 + (1+j) + (\overline{1+j})$$
.

(3 marks)

(b)
$$\frac{1+j}{1-j}$$
 - $(1+2j)(2+2j) + \frac{3-j}{1+j}$.

(5 marks)

Question 4

Given that y = 2x(2x - 1).

(a) Express
$$y \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2$$
 in terms of x.

(6 marks)

(b) Hence, calculate the values of x that satisfy the equation
$$y \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2 = 0$$

(2 marks)

Question 5

Given $\int_{0}^{2} f(x)dx = \int_{2}^{3} f(x)dx = 5$, determine:

(a)
$$\int_{0}^{3} f(x) dx.$$

(2 marks)

(b)
$$\int_{0}^{2} f(x)dx + \int_{3}^{2} f(x)dx$$
.

(2 marks)

(c)
$$\int_{0}^{2} [4f(x) + 2] dx$$
.

(4 marks)

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE(3) questions only.

Please use the answer booklet provided.

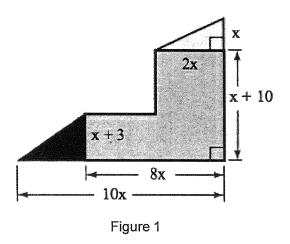
Question 6

(a) An electrical circuit comprises three closed loops giving the following equations for the currents i_1 , i_2 and i_3 . Evaluate the values of i_1 , i_2 and i_3 using Gaussian Elimination method.

$$i_1 + i_2 + i_3 - 3 = 0$$

 $2i_1 + 3i_2 = -7i_3$
 $i_1 + 3i_2 - 2i_3 = 17$

(15 marks)



(b) Express the area of the Figure 1 above in terms of x.

(5 marks)

Question 7

(a) The impedance in one part of a series circuit is -2 + 8j ohms, and the impedance in another part of the circuit is 4 - 5j ohms. Evaluate the total impedance in the circuit.

(2 marks)

(b) The voltage in a circuit is 45 - 15j volts and the impedance is -3 + 4j ohms. Calculate the current in the circuit. (in terms of a+bj) HINT:E = IZ.

(8 marks)

(c) Represent the current in the circuit from (b) as a complex number in exponential form. (10 marks)

Question 8

- (a) A missile fired from ground level rises x metres vertically upwards in t seconds and $x = 100t \frac{25}{2}t^2$. Determine:
 - i. the initial velocity of the missile.

(3 marks)

ii. the time when the height of the missile is a maximum.

(3 marks)

iii. the maximum height reached.

(2 marks)

iv. the acceleration at the maximum position.

(2 marks)

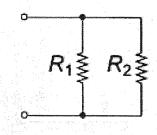


Figure 2

- (b) The combined electrical resistance R of R₁ and R₂connected in parallel shown in Figure 2 is given by the equation $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$.
 - i. Calculate the value of R if given $R_1 = 80\Omega$ and $R_2 = 100\Omega$.

(3 marks)

ii. Evaluate the rate of R changing when R_1 and R_2 are increasing at the rates of 0.3Ω and 0.2Ω per second respectively.

(7 marks)

Question 9

(a) Evaluate $\int \frac{x^3 - 4x - 10}{x^2 - x - 6} dx.$

(10 marks)

(b) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1+3\cos\theta}$ giving your answer correct to 4 decimal places by using:

(n = 6)

i. Simpson's rule.

(4 marks)

ii. Trapezoidal rule.

(3 marks)

iii. Mid ordinate rule.

(3 marks)

END OF EXAMINATION PAPER

DIFFERENTIATION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\sin f(x)) = f'(x)\cos f(x)$
$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}(\cos f(x)) = -f'(x)\sin f(x)$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}(\tan f(x)) = f'(x)\sec^2 f(x)$
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{d}{dx}(\csc f(x)) = -f'(x)\csc f(x)\cot f(x)$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\frac{d}{dx}(\sec f(x)) = f'(x)\sec f(x)\tan f(x)$
$\frac{d}{dx}(\cot x) = -\csc^2 x$	$\frac{d}{dx}(\cot f(x)) = -f'(x)\csc^2 f(x)$

EXPONENTIAL FUNCTION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}e^{x}=e^{x}$	$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$

LOGARITHMIC FUNCTION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}\ln x = \frac{1}{x}$	$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$

INTEGRATION

STANDARD FORM	GENERAL FORM Where: $f(x) = ax + b$
$\int \cos x dx = \sin x + c$	$\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + c$
$\int \sin x dx = -\cos x + c$	$\int \sin f(x) dx = \frac{-\cos f(x)}{f'(x)} + c$
$\int \sec^2 x dx = \tan x + c$	$\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + c$

$\int \sec x \tan x dx = \sec x + c$	$\int \sec f(x)\tan f(x)dx = \frac{\sec f(x)}{f'(x)} + c$
$\int \csc x \cot x dx = -\csc x + c$	$\int \csc f(x) \cot f(x) dx = \frac{-\csc f(x)}{f'(x)} + c$
$\int \csc^2 x dx = -\cot x + c$	$\int \csc^2 f(x) dx = \frac{-\cot f(x)}{f'(x)} + c$

EXPONENTIAL FUNCTION

STANDARD FORM	GENERAL FORM Where: $f(x) = ax + b$
$\int e^x dx = e^x + c$	$\int e^{f(x)} dx = \frac{e^{f(x)}}{f'(x)} + c$

LOGARITHMIC FUNCTION

STANDARD FORM	GENERAL FORM Where: $f(x) = ax + b$
$\int \frac{1}{x} dx = \ln x + c$	$\int \frac{1}{f(x)} dx = \frac{\ln f(x) }{f'(x)} + c$

HYPERBOLIC FUNCTION

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$