

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINERING TECHNOLOGY

FINAL EXAMINATION SEPTEMBER 2016 SEMESTER

COURSE CODE

: LGB 12103

COURSE NAME

: APPLIED MECHANICS

PROGRAMME NAME

: BACHELOR OF NAVAL ARCHITECTURE AND SHIP

BUILDING

DATE

: 19 JANUARY 2017

TIME

: 09.00 AM - 12.00 PM

DURATION

: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Please CAREFULLY read the instructions given in the question paper.
- 2. This question paper has information printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections; Section A and Section B.
- 4. Answer ALL TWO (2) questions in Section A. For Section B, answer THREE (3) questions ONLY.
- 5. Please write your answers on answer sheet provided.
- 6. Answer all questions in English language ONLY.
- 7. FORMULA has been appended for your reference.

THERE ARE 7 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

(a) The link in Figure 1 is subjected to two forces \mathbf{F}_1 and \mathbf{F}_2 .

i. Determine the resultant force and

(6 marks)

ii. Determine the orientation of the resultant force.

(4 marks)

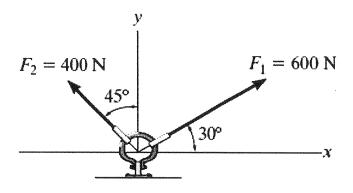


Figure 1

(b) Determine x and y components of F_1 and F_2 acting on the boom. Express each force as a Cartesian vector in Figure 2.

(10 marks)

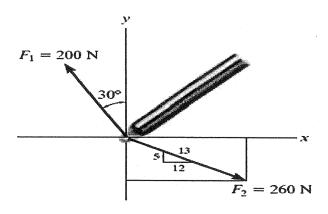


Figure 2

Question 2

(a) The towing pendant AB in Figure 3 is subjected to the force of 50 kN exerted by a tugboat. Determine the force in each of the bridles, BC and BD, if the ship is moving forward with constant velocity.

(10 marks)

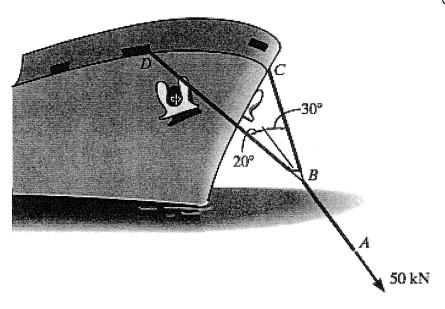


Figure 3

(b) Determine the tension developed in wires CA and CB required for equilibrium of the 10-kg cylinder in Figure 4. Take $\Theta = 40^{\circ}$

(10 marks)

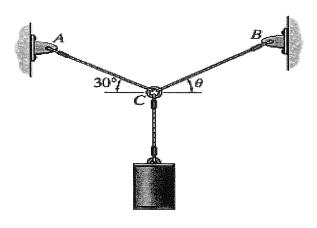
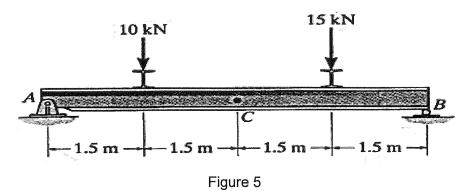


Figure 4

SECTION B (Total: 60 marks)


INSTRUCTION: Answer only THREE (3) questions.

Please use the answer booklet provided.

Question 3

The beams in Figure 5 has a pin connected at end A and roller at end B. Determine the normal force, shear force, and moment at point C.

(20 marks)

Question 4

- (a) Draw the free body- diagram.
- (b) Determine the horizontal and vertical components of force reaction $(A_y, B_x \text{ and } B_y)$ for the beam loaded in Figure 6. Neglect the weight of the beam in the calculations.

(20 marks)

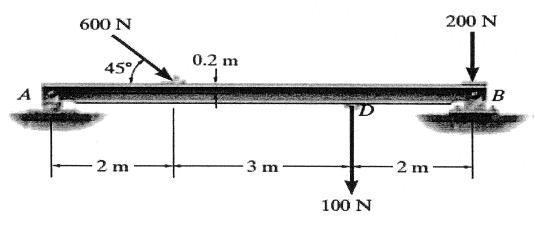


Figure 6

Question 5

Locate the Y centroid of the beam's cross-sectional area in Figure 7.

(20 marks)

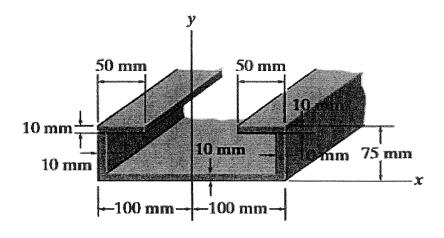


Figure 7

Question 6

Determine the moment of inertia of the composites area about the y' axis in Figure 8.

(20 marks)

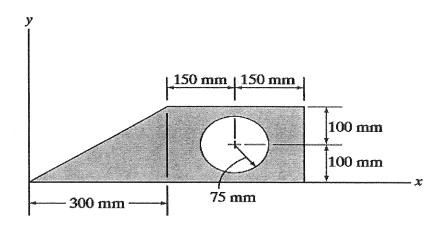


Figure 8

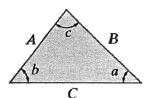
END OF EXAMINATION PAPER

List of formula

$$\overline{x} = \frac{\sum \widetilde{x}A}{\sum A}$$

$$\overline{y} = \frac{\sum \widetilde{y}A}{\sum A}$$

$$I = \sum (I + Ad^2)$$


$$k_{x'} = \sqrt{\frac{I_{x'}}{A}}$$

$$C = \sqrt{A^2 + B^2 - 2AB\cos c}$$

Cosine law:

$$C = \sqrt{A^2 + B^2 - 2AB \cos c}$$
Sine law:

$$\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$$

$$F_{\rm Rx} = \sum F_{\rm x}$$

$$F_{Ry} = \sum F_y$$

$$F_{R} = \sqrt{F_{Rx}^{2} + F_{Ry}^{2}} \quad \text{and } \theta = \tan^{-1} \left| \frac{F_{Ry}}{F_{Rx}} \right|$$

Semicircle		$I_x = I_y = \frac{1}{8}\pi r^4$ $J_O = \frac{1}{4}\pi r^4$
Quarter circle		$I_x = I_y = \frac{1}{16}\pi r^4$ $J_O = \frac{1}{8}\pi r^4$
Ellipse	$ \begin{array}{c c} y \\ \downarrow b \\ \hline & a \\ \hline \end{array} $	$\overline{I}_x = \frac{1}{4}\pi ab^3$ $\overline{I}_y = \frac{1}{4}\pi a^3b$ $J_O = \frac{1}{4}\pi ab(a^2 + b^2)$
Rectangle		$ \overline{I}_{x'} = \frac{1}{12}bh^3 $ $ \overline{I}_{y'} = \frac{1}{12}b^3h $ $ I_x = \frac{1}{3}bh^3 $ $ I_y = \frac{1}{3}b^3h $ $ J_C = \frac{1}{12}bh(b^2 + h^2) $
Triangle	$ \begin{array}{c cccc} h & & & \\ \hline h & & & \\ \hline & & & $	$\overline{I}_{x'} = \frac{1}{36}bh^3$ $I_x = \frac{1}{12}bh^3$
Circle	y x	$\overline{I}_x = \overline{I}_y = \frac{1}{4}\pi r^4$ $J_O = \frac{1}{2}\pi r^4$