

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINEERING TECHNOLOGY

FINAL EXAMINATION JANUARY 2016 SEMESTER

COURSE CODE

: LGB 12203

COURSE NAME

: MATHEMATICS 1

PROGRAMME NAME

(FOR MPU: PROGRAMME LEVEL)

: BACHELOR OF ELECTRICAL ENGINEERING

DATE

: 30 MAY 2016

TIME

: 09.00 AM - 12.00 PM

DURATION

: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper has information printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections; Section A and Section B.
- 4. Answer ALL questions in Section A. For Section B, answer THREE (3) questions only.
- 5. Please write your answers in the answer booklet provided.
- 6. Answer all questions in English.
- 7. Answers should be written in blue or black ink except for sketching, graphic and illustration.

THERE ARE 7 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

Find all the roots of $h(x) = x^3 - 7x^2 + 4x + 12 = 0$. (using trial and error and division).

(8 marks)

Question 2

Given that matrix
$$A = \begin{bmatrix} 3 & -4 \\ 2 & -2 \end{bmatrix}$$
 and $B = m \begin{bmatrix} n & 4 \\ -2 & 3 \end{bmatrix}$ such that $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,

Find the values of m and n.

(8 marks)

Question 3

If x and y are real, solve the equation:

$$\frac{jx}{1+jy} = \frac{3x+4j}{x+3y}.$$

(8 marks)

Question 4

If $f(x, y) = 3e^{2x}y - \frac{2}{x^2} - 7(\cos y)$, determine:

(a)
$$f_{xy}(x, y)$$
.

(3 marks)

(b)
$$f_{yx}(x, y)$$
.

(3 marks)

(c)
$$f_{xx}(x, y)$$

(2 marks)

Question 5

Evaluate $\int_{-1}^{0} x^3 (1-2x^4)^3 dx$.

(8 marks)

JANUARY 2016 CONFIDENTIAL

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only.

Please use the answer booklet provided.

Question 6

(a) Evaluate the value of x, y and z from the following system of equation using Cramer's rule:

$$2x + y - 3z = 13$$
$$x = y + z + 1$$
$$-3x + 2y = -5z - 10$$

(15 marks)

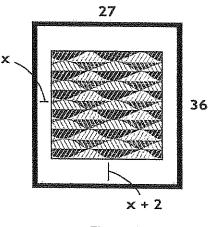


Figure 1

(b) A picture frame has a white mat surrounding the picture. The frame has a width of 27 cm and a length of 36 cm. The mat is 2 cm wider at the top and bottom than it is on the sides. Express the area of the mat in Figure 1 in terms of x.

(5 marks)

LGB 12203

MATHEMATICS 1

Page 4 of 7

JANUARY 2016 CONFIDENTIAL

Question 7

(a) The impedance in one part of a series circuit is 2 + 8j ohms, and the impedance in another part of the circuit is 4 - 6j ohms. Evaluate the total impedance in the circuit.

(2 marks)

(b) The voltage in a circuit is 45 + 10j volts and the impedance is 3 + 4j ohms. Calculate the current in the circuit. (in terms of a+bj) HINT:E = IZ.

(8 marks)

(c) Represent the current in the circuit from (b) as a complex number in exponential form.

(10 marks)

LGB 12203 MATHEMATICS 1 Page 5 of 7

Question 8

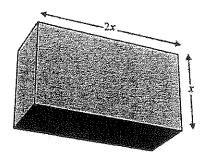


Figure 2

A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, x cm, as shown in Figure 2. The volume of the cuboid is 81 cubic centimetres.

(a) Show that the total length L cm, of the twelve edges of the cuboid is given by $L = 12x + \frac{162}{x^2}$.

(4 marks)

(b) Evaluate the total length *L*. Then, by further differentiation, justify that the value is minimum.

(7 marks)

(c)

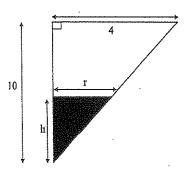


Figure 3

Consider a conical tank whose radius at the top is 4 feet and whose depth is 10 feet as in Figure 3. It is being filled with water at the rate of 2 cubic feet per minute. How fast is the water level rising when it is at 5 feet depth? HINT: $V = \frac{1}{3}\pi r^2 h$.

(9 marks)

LGB 12203

MATHEMATICS 1

Page 6 of 7

Question 9

(a) Evaluate $\int \frac{x^2+1}{x^2-1} dx$.

decimal places.

(10 marks)

(b) Use Simpson's Theorem to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-\frac{1}{5}\sin^2\theta}}$ giving your answer correct to 4

(10 marks)

END OF EXAMINATION PAPER

LGB 12203 MATHEMATICS 1 Page 7 of 7

DIFFERENTIATION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\sin f(x)) = f'(x)\cos f(x)$
$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}(\cos f(x)) = -f'(x)\sin f(x)$
$\frac{d}{dx}(\tan x) = \sec^{2}x$	$\frac{d}{dx}(\tan f(x)) = f'(x)\sec^2 f(x)$
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{d}{dx}(\csc f(x)) = -f'(x)\csc f(x)\cot f(x)$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\frac{d}{dx}(\sec f(x)) = f'(x)\sec f(x)\tan f(x)$
$\frac{d}{dx}(\cot x) = -\csc^2 x$	$\frac{d}{dx}(\cot f(x)) = -f'(x)\csc^2 f(x)$

EXPONENTIAL FUNCTION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}e^{x}=e^{x}$	$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$

LOGARITHMIC FUNCTION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}\ln x = \frac{1}{x}$	$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$

INTEGRATION

STANDARD FORM	GENERAL FORM Where: $f(x) = ax + b$
$\int \cos x dx = \sin x + c$	$\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + c$
$\int \sin x dx = -\cos x + c$	$\int \sin f(x) dx = \frac{-\cos f(x)}{f'(x)} + c$
$\int \sec^2 x dx = \tan x + c$	$\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + c$

$\int \sec x \tan x dx = \sec x + c$	$\int \sec f(x) \tan f(x) dx = \frac{\sec f(x)}{f'(x)} + c$
$\int \csc x \cot x dx = -\csc x + c$	$\int \csc f(x) \cot f(x) dx = \frac{-\csc f(x)}{f'(x)} + c$
$\int \csc^2 x dx = -\cot x + c$	$\int \csc^2 f(x) dx = \frac{-\cot f(x)}{f'(x)} + c$

EXPONENTIAL FUNCTION

STANDARD FORM	GENERAL FORM Where: $f(x) = ax + b$
$\int e^x dx = e^x + c$	$\int e^{f(x)} dx = \frac{e^{f(x)}}{f'(x)} + c$

LOGARITHMIC FUNCTION

STANDARD FORM	GENERAL FORM Where: $f(x) = ax + b$
$\int \frac{1}{x} dx = \ln x + c$	$\int \frac{1}{f(x)} dx = \frac{\ln f(x) }{f'(x)} + c$

HYPERBOLIC FUNCTION

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$