

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINEERING TECHNOLGY

FINAL EXAMINATION JANUARY 2016 SEMESTER

COURSE CODE

: LGB 11803

COURSE NAME

: THERMODYNAMICS 1

PROGRAMME NAME

(FOR MPU: PROGRAMME LEVEL)

: BACHELOR OF MARINE ENGINEERING

TECHNOLOGY

DATE

: 19 MAY 2016

TIME

: 02.00 PM - 4.30 AM

DURATION

: 2 1/2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Please CAREFULLY read the instructions given in the question paper.
- 2. This question paper has information printed on both sides of the paper.
- 3. This question paper consists of ONE (1) section ONLY; Section A with SIX (6) questions.
- 4. Answer FOUR (4) questions ONLY in Section A.
- 5. Please write your answers on the answer booklet provided.
- 6. Answer all questions in English language ONLY.
- 7. Thermodynamics Table of Properties and Formula has been appended for your reference.

THERE ARE 4 PAGES OF QUESTIONS, INCLUDING THIS PAGE:

JANUARY 2016 CONFIDENTIAL

SECTION A (Total: 100 marks)

INSTRUCTION: Answer only FOUR questions.

Please use the answer booklet provided.

Question 1

A 0.6m³ rigid tank initially contains saturated refrigerant-134a vapor at 1200kPa. As a result of heat transfer from the refrigerant, the pressure drops to 400kPa.

i. Determine the final temperature, T₂.

(7 marks)

ii. Calculate the amount of refrigerant that has condensed.

(9 marks)

iii. Determine the heat transfer, Qout.

(9 marks)

Question 2

Steams enters a nozzle at 400°C and 800kPa with a velocity of 10m/s, and leaves at 300°C and 200kPa while losing heat at a rate of 25kW. For an inlet area of 800cm², determine the following:

i. inlet enthalpy, h₁

(2 marks)

ii. mass flow rate, m

(3 marks)

iii. velocity at the nozzle exit, V2

(17 marks)

iv. volume flow rate of the steam at the nozzle exit, \dot{V}_2

(3 marks)

Question 3

A rigid tank is divided into two equal parts by a partition as shown in Figure 1. Initially one side of the tank contains 5kg water at 200kPa and 25°C, and the other side is evacuated.

JANUARY 2016 CONFIDENTIAL

Question 5

An Otto cycle with a compression ratio of 7 begins its operation at 90kPa and 25°C. The maximum cycle temperature is 1007°C. Utilizing the air-standard assumptions, determine the thermal efficiency by using the followings;

i. Constant specific heats at room temperature

(3 marks)

ii. Variable specific heats

(20 marks)

iii. Sketch the P-v diagram of the cycle.

(2 marks)

Question 6

An ideal gas refrigeration cycle using air as the working medium is to maintain a refrigerated space at -18°C while rejecting heat to the surrounding medium at 27°C. The pressure ratio of the compressor is 4 and the mass flow rate is 0.05kg/s.

i. Determine all enthalpy in each state for this cycle.

(14 marks)

ii. Calculate the coefficient of performance, COP.

(9 marks)

iii. Determine the rate of refrigeration, \dot{Q}_{refrig} .

(2 marks)

END OF EXAMINATION PAPER

THERMODYNAMICS FORMULA

First L:	aw of	Thermody	namics
----------	-------	----------	--------

Kinetic Energy,
$$KE = \frac{mV^2}{2}$$

 $Potential\ Energy, PE = mgz$

Total energy, E = U + KE + PE

Heat transfer, $Q = \dot{Q}\Delta t$

$$W = Fs$$

Force,
$$F = PA$$

Spring Force, F = kx

 $\overline{Electrical\ work, W_{_e} = VI\Delta t}$

Shaft work $W_{sh} = 2\pi nt$

Spring Work,
$$W_{spring} = \frac{1}{2}k(x_2^2 - x_1^2)$$

Enthalpy, H = U + PV

Quality,
$$x = \frac{m_g}{m_{total}}$$

 $Mass\ total^{m_{total}} = m_f + m_g$

Ideal gas equation

$$PV = mRT$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

General Energy Balance

$$E_{in} - E_{out} = \Delta E_{system}$$

$$\Delta E_{system} = \Delta U + \Delta KE + \Delta PE$$

Energy Balance for a closed system

$$s_2 = s_1$$

$$\left(\frac{T_2}{T_1}\right)_{s=const.} = \left(\frac{v_1}{v_2}\right)^{k-1}$$

$$\left(\frac{T_2}{T_1}\right)_{s=const.} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k}$$

$$\left(\frac{P_2}{P_1}\right)_{s=const.} = \left(\frac{v1}{v2}\right)^t$$

$$\left(\frac{P_2}{P_1}\right)_{s=const.} = \frac{P_{r2}}{P_{r1}}$$

$$\left(\frac{v_2}{v_1}\right)_{s=const.} = \frac{v_{r2}}{v_{r1}}$$

Power Cycles

Compression ratio,
$$r = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{V_{BDC}}{V_{TDC}} = \frac{V_1}{V_2} = \frac{v_1}{v_2}$$

$$MEP = \frac{W_{net}}{V_{\text{max}} - V_{\text{min}}} = \frac{w_{net}}{v_{\text{max}} - v_{\text{min}}}$$

Otto Cycle

$$(q_{in} - q_{out}) + (w_{in} - w_{out}) = h_{exit} - h_{inlet}$$

$$q_{in} = u_3 - u_2 = c_v (T_3 - T_2)$$

$$q_{out} = u_4 - u_1 = c_v (T_4 - T_1)$$

Thermal efficiency,
$$\eta_{th,Otto} = \frac{W_{nel}}{Q_{in}} = 1 - \frac{q_{out}}{q_{in}}$$

$$\eta_{th,Otto} = 1 - \frac{1}{r^{k-1}}$$

Diesel Cycle

$$q_{in} = u_3 - u_2 = P_2(v_3 - v_2) + (u_3 - u_2) = h_3 - h_2 = c_p(T_3 - T_2)$$

	$W_{net,out} = Q_H - Q_L$
	$\eta_{th} = rac{W_{net,out}}{Q_H} = 1 - rac{Q_L}{Q_H}$
The second secon	$COP_{R} = \frac{Q_{L}}{W_{net,in}} = \frac{q_{L}}{w_{net,in}} = \frac{Q_{L}}{Q_{H} - Q_{L}} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}}$
	$COP_{HP} = \frac{Q_H}{W_{net,in}} = \frac{q_H}{w_{net,in}} = \frac{Q_H}{Q_H - Q_L} = \frac{h_2 - h_3}{h_2 - h_1}$
	$COP_{HP} = COP_R + 1$

DIMERSION	Marke	METRIC/ENGLISH
Specific volume	$1 \text{ m}^3/\text{kg} = 1000 \text{ U/kg} = 1000 \text{ cm}^3/\text{g}$	1 m ³ /kg = 16.02 ft ³ /lbm 1 ft ³ /lbm = 0.062428 m ³ /kg
Temperature	$\pi(K) \approx \pi^{\circ}C) + 273.15$ $\Delta \pi(K) = \Delta \pi^{\circ}C)$	$\pi(R) = \pi^{\circ}F$) + 459.67 = 1.8 $\pi(K)$ $\pi^{\circ}F$) = 1.8 $\pi^{\circ}C$) + 32 $\Delta\pi^{\circ}F$) = $\Delta\pi(R)$ = 1.8 $\Delta\pi(K)$
Thermal conductivity	1 W/m · °C = 1 W/m · K	1 W/m - °C = 0.57782 Btu/h - ft - °F
Velocity	1 m/s = 3.60 km/h	1 m/s = 3.2808 ft/s = 2.237 mi/h 1 mi/h = 1.46667 ft/s 1 mi/h = 1.6093 km/h
Volume	1 m ³ = 1000 L = 10 ⁶ cm ³ (cc)	1 m³ = 6.1024 × 10 ⁴ in³ = 35.315 ft³ = 264.17 gal (U.S.) 1 U.S. galion = 231 in³ = 3.7854 L 1 fl ounce = 29.5735 cm³ = 0.0295735 L 1 U.S. galion = 128 fl ounces
Volume flow rate	$1 \text{ m}^3/\text{s} = 60,000 \text{ Umin} = 10^6 \text{ cm}^3/\text{s}$	1 m ³ /s = 15,850 gal/min (gpm) = 35,315 ft ³ /s = 2118.9 ft ³ /min (cfm)

^{*}Mechanical horsepower. The electrical horsepower is taken to be exactly 746 W.

Some Physical Constants

.31447 kJ/kmol · K .31447 kPa · m²/kmol · K .0831447 bar · m³/kmol · K 2.05 L · atm/kmol · K .9858 Btu/lbmol · R 545.37 ft · lbf/lbmol · R 0.73 psia · ft³/lbmol · R 80665 m/s² .174 ft/s²
= 101.325 kPa = 1.01325 bar = 14.696 psia = 760 mm Hg (0°C) = 29.9213 in Hg (32°F) = 10.3323 m H ₂ O (4°C)
5704 × 10 ⁻⁸ W/m² · K⁴ 1714 × 10 ⁻⁸ Btu/h - ft² · R⁴
380650 × 10 ⁻²³ J/K
9979 × 10 ⁵ m/s 836 × 10 ⁶ fVs
1.36 m/s 89 tt/s
33.7 kJ/kg 43.5 Btu/lbm
2256.5 kJ/kg 370.12 Btu/lbm