

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINEERING TECHNOLOGY

FINAL EXAMINATION JANUARY 2016 SEMESTER

COURSE CODE

: LMD10503

COURSE NAME

: TECHNICAL MATHEMATICS 1

PROGRAMME NAME

(FOR MPU: PROGRAMME LEVEL)

: DIPLOMA OF ENGINEERING TECHNOLOGY IN

MARINE ENGINEERING

DATE

: 18 MAY 2016

TIME

: 09.00 AM - 11.30 AM

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTIONS TO CANDIDATES

- 1. Please CAREFULLY read the instructions given in the question paper.
- 2. This question paper has information printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections; Section A and Section B.
- 4. Answer ALL questions in Section A. For Section B, answer TWO (2) questions only.
- 5. Please write your answers on the answer booklet provided.
- 6. Answer all questions in English language ONLY.

THERE ARE 8 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

	* - 4	•	 		v.
					N.
		•			
		,			

SECTION A (Total: 15 marks)

INSTRUCTION: Answer ALL questions.

Please use the objective answer sheet provided.

1. If $27 = 3^x$, determine the value of x

- A. 3
- B. 0
- C. 2
- D. 1

2. Given $2 \ln 2 + \ln x = \ln 6$, determine the value of x.

- A. 1.50
- B. 0.41
- C. 1.79
- D. 1.10

3. Express 2 log₃ 2x² –log₃ x, as a single logarithm.

- A. log₃4x
- B. $\log_3 2x^3$
- C. $log_3 2x^2$
- D. $\log_3 4x^3$

4. If -4g+ 3(16-20g) =-16, determine the value of g.

- A. 1
- B. -1
- C. 3
- D. -2

- 5. If $a(3+b) = b + c^2b 3$, express b in term of a and c.
 - A. $b = \frac{-3-3a}{a-1-c^2}$
 - B. $b = \frac{-6}{a 1 c^2}$
 - C. $b = \frac{-3 3a}{a c^2}$
 - D. $b = \frac{3a-3}{a+1+c^2}$
- 6. Solve the linear equation $\frac{6(a+1)}{12} = 3a-2$.
 - A. 5
 - B. 12
 - C. 3
 - D. 1
- 7. Determine the factors of $2x^2+5x-3=0$.
 - A. (2x+1)(x+3)
 - B. (2x-1) (x+3)
 - C. (2x+1)(x-3)
 - D. (2x-1) (x-3)
- 8. Solve $x^2-1=0$
 - A. 1
 - B. 0 and 1
 - C. 1 and -1
 - D. -1
- 9. If $Q(x) = x^3 + 5x^2 2x 24$. Evaluate Q (-2)
 - A. 0
 - B. 1
 - C. -8
 - D. 8

10.
$$\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} -2 & 7 \\ 3 & 2 \end{bmatrix} =$$

A.
$$\begin{bmatrix} 5 & 6 \\ 2 & 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 5 & -6 \\ -2 & 0 \end{bmatrix}$$

$$C. \qquad \begin{bmatrix} -5 & 6 \\ -2 & 4 \end{bmatrix}$$

D.
$$\begin{bmatrix} 1 & 8 \\ 4 & 4 \end{bmatrix}$$

11. Express 235⁰ in radian.

A.
$$\frac{\pi}{235}$$

B.
$$\frac{235}{\pi}$$

C.
$$\frac{47\pi}{36}$$

D.
$$\frac{36\pi}{47}$$

12. Identify the type of triangle in the following Figure 1.

- A. Isosceles triangle.
- B. Equilateral triangle
- C. Right triangle.
- D. Obtuse triangle.

- 13. Determine i³⁵.
 - A. -i
 - B. i
 - C. -1
 - D. 1
- 14. Determine the complex conjugate of q=2-3i.
 - A. 3*i*
 - B. -2+3*i*
 - C. 2+3*i*
 - D. 3
- 15. If A=5-4*i* and B=2+3*i*, determine A+B
 - A. 7-*i*
 - B. 1-7*i*
 - C. 7-7*i*
 - D. 7-2*i*

SECTION B (Total: 45 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

Solve $2^{x+1}4^{3-x}=16(8^x)$

(5 marks)

Question 2

Given
$$\frac{1}{2}p+3=\frac{3p}{5}-1$$
, solve for p

(5 marks)

Question 3

Solve
$$\frac{x^2}{2} = 5x - 17$$
 by using quadratic formula.

(5 marks)

Question 4

When the expression x^3+2x^2+ax-7 is divided by x+3, the remainder is -4. By using synthetic division, find the value of a.

(5 marks)

Question 5

Given
$$Q = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$
 and $R = \begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix}$, show that $(QR)^T = R^TQ^T$.

(5 marks)

Question 6

Figure below shows the length of the arc of two circle, AB and CD subtended by a central angle is 2s and 3s respectively. Given that the angle θ is 1.5 radian and the area of ACDB is 135 cm².

(a) Determine the value of s

(6 marks)

(b) Find the length of arc AB and CD

(2 marks)

(c) Find the perimeter of ABCD

(2 marks)

Question 7

Given $Z_1 = -3 + 4i$ and $Z_2 = 1 + 2i$

(a) Draw the Argand diagram of Z_1 and Z_2

(2 marks)

(b) Determine

$$i Z_1 Z_2$$

ii
$$\frac{Z_2}{Z_1}$$

(8 marks)

SECTION C (Total: 40 marks)

INSTRUCTION: Answer only TWO(2) question ONLY.

Please use the answer booklet provided.

Question 1

Given the system of equations:

$$x_1 - x_2 + x_3 = 3$$

$$2x_2 - x_3 = 1$$

$$2x_1 + 3x_2 = 4$$

(a) Write the system into matrix form.

(2 marks)

(b) Solve the system by using Cramer's rule.

(18 marks)

Question 2

(a) Solve the following simultaneous equations:

(10 marks)

(b) Given that (x+3) is a factor of f(x), where $f(x) = px^3+4x^2+qx-60$, and when f(x) is divided by (x-2), its remainder is -70. Determine the values of p and q.

(10 marks)

Question 3

Given that A=-3+5i, B=-10-8i, C= 8(cos 75°+i sin 75°) & D=4 (cos 100°+i cos 100°)

(a) Sketch A and B on the Argand diagram

(2 marks)

(b) Determine the modulus and argument for A

(8 marks)

(c) Express A in trigonometry and exponential form

(3 marks)

(d) Determine $\frac{A}{CD}$ and leave your answer in trigonometry form

(7 marks)

END OF EXAMINATION PAPER

i

FORMULA SHEET

ALGEBRA

QUADRATIC FORMULA	
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2\pi}$	

TRIGONOMETRY 1

LAW OF SINE	LAW OF COSINE		
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	$a^2 = b^2 + c^2 - 2bcCosA$		

COMPLEX NUMBER

POWER OF I
$i = \sqrt{-1}$
$i^2 = -1$
$i^3 = -i$
<i>i</i> ⁴ = 1
ALGEBRAIC FORM
Z=a+b <i>i</i>
TRIGONOMETRIC FORM
$Z=r\left(\cos\theta+i\sin\theta\right)$
POLAR FORM
$\mathbf{Z} = \mathbf{r} \angle \theta$
EXPONENTIAL FORM
$Z = re^{i\theta}$

