

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINEERING TECHNOLOGY

FINAL EXAMINATION JANUARY 2016 SEMESTER

COURSE CODE

: LED 10403

COURSE NAME

: ELECTRIC CIRCUITS

PROGRAMME NAME

(FOR MPU: PROGRAMME LEVEL)

: DIPLOMA OF ENGINEERING TECHNOLOGY IN

ELECTRICAL AND ELECTRONICS (MARINE)

DATE

: 26 MAY 2016

TIME

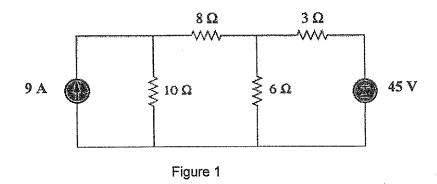
: 09.00 A.M. - 12.00 P.M.

DURATION

: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Please CAREFULLY read the instructions given in the question paper.
- 2. This question paper has information printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections; Section A and Section B.
- 4. Answer ALL questions in Section A. For Section B, answer TWO (2) questions only.
- 5. Please write your answers on the answer booklet provided.
- 6. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 7. Answer all questions in English language ONLY.


THERE ARE 8 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer all questions.
Please use the answer booklet provided.

Question 1 [CLO 1, 2]

a) Referring to Figure 1, determine the current and power in the 8- Ω resistor by using Source Transformation and KVL.

(9 marks)

- b) For circuit in Figure 2:
 - i. Determine R_{Th} and V_{Th} at terminals 1-2.

(3 marks)

ii. A load is connected to the network. Find the maximum possible power supplied to the load.

(3 marks)

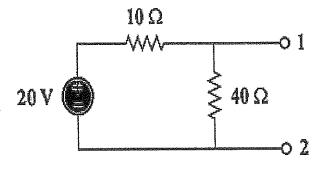


Figure 2

Question 2 [CLO 1, 2]

- a) Given the sinusoidal voltage $v(t) = 5 \sin (4\pi t 60^{\circ}) \text{ V}$, state:
 - i. The amplitude of the voltage.
 - ii. The phase.
 - iii. The angular frequency.
 - iv. Period.
 - v. Frequency.

(5 marks)

b) Find input impedance (Z_{in}) in the circuit in Figure 3 below.

(5 marks)

c) A series RC circuit has $R = 50\Omega$ and $C = 4 \, mF$. If the input voltage is $v(t) = 180 \cos(20t + 60^{\circ})V$, find the current flowing through the circuit.

(5 marks)

Question 3 [CLO 3]

a) Define bandwidth at the series resonant frequency. Hence, sketch the bandwidth.

(5 marks)

- b) For a parallel RLC circuit with R = 40 Ω , L = 2 mH and C = 10 μ F, calculate:
 - i. the resonance frequency, fr
 - ii. the quality factor, Q
 - iii. the bandwidth, BW
 - iv. the half-power frequencies, f1 and f2

(10 marks)

Question 4 [CLO 1, 2]

a) Draw TWO (2) possible configurations of three-phase voltage sources. Show all the line and phase voltages of the configurations.

(5 marks)

- b) A balanced Y-load having a 30 Ω resistance in each leg is connected to a threephase Y-connected generator having a line voltage of 120 V. Calculate the magnitude of:
 - i. The phase voltage of generator

(4 marks)

ii. The phase current of the load

(4 marks)

iii. The line current

(2 marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions ONLY.

Please use the answer booklet provided.

Question 5 [CLO 2, 3]

a) A circuit with a supernode is shown in Figure 4. Determine the node voltages using nodal analysis.

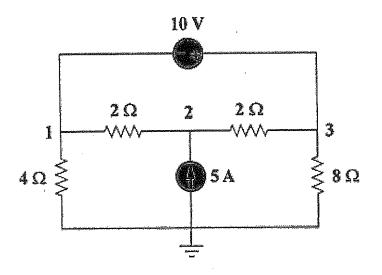
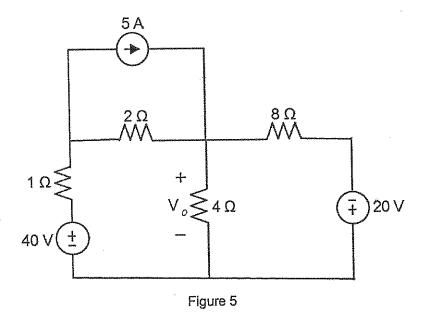


Figure 4


(10 marks)

- b) A 110-V rms, 60-Hz source is applied to a load impedance Z. The apparent power entering the load is 120 VA at a power factor of 0.707 lagging.
 - i. Calculate the complex power.
 - ii. Find the rms current supplied to the load.
 - iii. Determine Z.
 - iv. Assuming that $Z = R + j\omega L$, find the values of R and L.

(10 marks)

Question 6 [CLO 2, 3]

a) Use mesh analysis to determine V_0 in the circuit of Figure 5.

(10 marks)

- b) Refer to the circuit shown in Figure 6:
 - i. Find the power factor.
 - ii. Calculate the average power dissipated.
 - iii. Determine the value of the capacitance that will give a unity power factor when connected to the load.

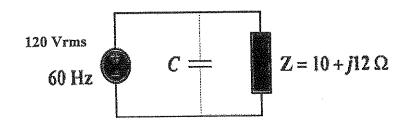


Figure 6

(10 marks)

Question 7 [CLO 2, 3]

a) If $V_{an} = 440 \angle 60^{\circ}$ in the network of Figure 7, find the load phase currents I_{AB} , I_{BC} , and I_{CA} .

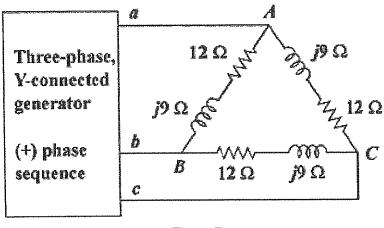
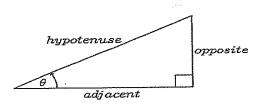


Figure 7

(10 marks)

b) A balanced Y-connected load has an impedance of (30 + j60) Ω per phase. With a line voltage of 240 \angle 0° V_{ms}, calculate the total real power, reactive power, apparent power and power factor.

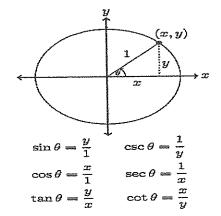

(10 marks)

END OF QUESTIONS

TRIGONOMETRIC FORMULA SHEET

Right Triangle Definition Assume that:

 $0 < \theta < \frac{\pi}{2}$ or $0^{\circ} < \theta < 90^{\circ}$



$$\sin \theta = \frac{opp}{hyp} \qquad \csc \theta = \frac{hyp}{opp}$$

$$\cos \theta = \frac{adj}{hyp} \qquad \sec \theta = \frac{hyp}{adj}$$

$$con \theta = \frac{adj}{adj} \qquad adj$$

Unit Circle Definition Assume θ can be any angle.

Periods of the Trig Functions

The period of a function is the number, T, such that $f(\theta + T) = f(\theta)$. So, if ω is a fixed number and θ is any angle we have the following periods.

$$\sin(\omega\theta) \Rightarrow T = \frac{2\pi}{\omega}$$

$$\csc(\omega\theta) \Rightarrow T = \frac{2h}{\omega}$$

$$\cos(\omega \theta) \Rightarrow T = \frac{2\pi}{\omega}$$

$$\tan(\omega \theta) \Rightarrow T = \frac{\pi}{\omega}$$

$$\csc(\omega\theta) \Rightarrow T = \frac{2\pi}{\omega}$$

$$\sec(\omega\theta) \Rightarrow T = \frac{2\pi}{\omega}$$

$$\cot(\omega\theta) \Rightarrow T = \frac{\pi}{\omega}$$

Complex Numbers

$$i = \sqrt{-1}$$
 $i^2 = -1$ $i^3 = -i$ $i^4 = 1$

$$\sqrt{-a} = i\sqrt{a}, a \ge 0$$

$$(a+bi)(a-bi)=a^2+b^2$$

$$(a+bi)+(c+di)=a+c+(b+d)i$$

$$(a+bi)+(c+di)=a+c+(b+d)i \hspace{1cm} |a+bi|=\sqrt{a^2+b^2} \hspace{0.1cm} \text{Complex Modulus}$$

$$(a+bi)-(c+di)=a-c+(b-d)i$$

$$\overline{(a+bi)} = a-bi$$
 Complex Conjugate

$$(a+bi)(c+di) = ac-bd+(ad+bc)i$$

$$\overline{(a+bi)}(a+bi) = |a+bi|^2$$

Identities and Formulas

$$\sin (\omega t \pm 180^\circ) = -\sin \omega t$$

$$cos(\omega t \pm 180^\circ) = -cos \omega t$$

$$\sin (\omega t \pm 90^\circ) = \pm \cos \omega t$$

$$cos(\omega t \pm 90^\circ) = sin \omega t$$

Sum and Difference Formulas

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

Product to Sum Formulas

$$\sin\alpha\sin\beta = \frac{1}{2}[\cos(\alpha-\beta) - \cos(\alpha+\beta)]$$

$$\cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

Sum to Product Formulas

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2\sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

