

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINEERING TECHNOLOGY

FINAL EXAMINATION JANUARY 2016 SEMESTER

COURSE CODE

: LDD 30502

COURSE NAME

: SHIP RESISTANCE AND PROPULSION

PROGRAMME NAME

(FOR MPU: PROGRAMME LEVEL)

: DET SHIP DESIGN

DATE

: 24 MAY 2016

TIME

: 02.00 PM - 4.00 PM

DURATION

: 2 HOURS

INSTRUCTIONS TO CANDIDATES

NOTE: Instructions below to be edited to suit the needs of the intended course/examination.

- 1. Please CAREFULLY read the instructions given in the question paper.
- 2. This question paper has information printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections; Section A and Section B.
- 4. This question paper consists of TWO (2) sections; Section 'A' and Section 'B'. Answer all questions in Section 'A' and TWO (2) questions only from Section 'B'.
- 5. Please write your answers on the answer booklet provided.
- 6. Answer all questions in English language ONLY.

THERE ARE 5 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

JANUARY 2016 CONFIDENTIAL

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) Total resistance is consists a number of different components, which is caused by a variety of factors and which interact one with other in a complicated way. Sketch the components of total resistance.

[3 marks]

(b) List and describe three (3) other types of ship resistance.

[9 marks]

(c) In order to perform a model testing, model is scaled down to the model size of 6m length and speed 3.5m/s have wetted surface area 27 m². A real ship length 105m. Applying Geometrical Similarity, determine the speed of model, V_s (in m/s) and wetted surface area of model, S_s.

[8 marks]

Question 2

(a) Power delivered from engine to propeller will be experience losses. Sketch the sequence of **power transfer** and specify three (3) of **power transfer** in screw driven ship.

[8 marks]

JANUARY 2016 CONFIDENTIAL

(b) Total resistance of the ship, 1216.5kN at speed of 6.6 ms⁻¹ is calculated based on model testing result. The values of wake fraction and thrust deduction factor are given as 0.174 and 0.272 respectively, taking Total Efficiency is 68 % and assuming η_B is 0.72. **Calculate:**

- i. Effective Power, PE
- ii. Hull efficiency, η_H
- iii. Thrust Power, PT
- iv. Power Delivered, PD
- v. Quasi Propulsive Efficiency, ηD

[12 marks]

Question 3

(a) Explain the five (5) basic position for the bulb and sketch the **modern bulb** form that typically preferable applied to the ship.

[10 marks]

(b) The common bow developed presently from the bow with vertical stem. State three (3) advantages of a raked stem above water.

[3 marks]

(c) The efficiency of a propeller takes an important place in the designing process of the propulsion system. State six (6) the efficiency depends on the flow field of the propeller.

[7 marks]

SEPTEMBER 2015 CONFIDENTIAL

SECTION B (Total: 40 marks)

INSTRUCTION: Answer only TWO (2) questions.

Please use the answer booklet provided.

Question 4

- (a) Describe and sketch the propeller geometries as listed below:
 - i. Diameter

iv. Skew

ii. Blade profile

v. Face

iii. Rake

[10 marks]

- (b) The relationship between the ship speed, pitch, wake and slip at stern of the moving ship equipped with propeller. Table 1 show a requirements data and you are required to calculate X and Y:
 - i. Ship Speed Vs
 - ii. Theoretical velocity V_t
 - iii. Apparent slip SA
 - iv. Speed of Advance VA
 - v. Real slip S_R

Table 1

Data (unit)	X
Ship speed (knot)	25
Propeller rate of rotation per minute RPM (rev/min)	205
Taylor wake fraction	0.3
Pitch (m)	4.5

[10 marks]

JANUARY 2016 CONFIDENTIAL

Question 5

- (a) Describe and sketch the marine propulsions as listed below:
 - i. Waterjet Propulsion
 - ii. Podded Azimuthing Propellers
 - iii. Voith Schneider Propeler

[12 marks]

(b) Alternative main engine types are marine diesel engine, gas turbine engine and steam turbine engine. Explain briefly four (4) the characteristics comparison between marine diesel and gas turbine.

[8 marks]

Question 6

- (a) Most electrical propulsion system have diesel engine either medium or high speed as their prime movers.
 - i. State sixth (6) the advantages electrical marine propulsion.

[6 marks]

ii. Sketch and design the typical diagram of marine electrical propulsion system which commonly applied.

[4 marks]

- (b) Explain briefly and sketch the combination in marine propulsion as listed below:-.
 - i. CODOG
 - ii. COLAG

[10 marks]

END OF QUESTION

LIST OF FORMULAE

1.
$$R_e = \frac{VL}{\mu/\rho}$$

2.
$$R_f = f.S.V^{1.825}$$

3.
$$R_R = C_R \times K$$

$$4. \quad R_T = R_f + R_R$$

5. Scale Factor =
$$\lambda$$

$$\lambda = \frac{L_S(m)}{L_M(m)} \quad : \text{Length} \qquad \lambda^2 = \frac{S_S(m^2)}{S_M(m^2)} \quad : \text{Area}$$

$$\lambda^3 = \frac{\nabla_S(m^3)}{\nabla_M(m^3)} \quad : \text{Volume} \qquad \sqrt{\lambda} = \frac{V_S(m/S)}{V_M(m/S)} \quad : \text{Speed}$$

$$\lambda^3 = \frac{\nabla_S (m^3)}{\nabla_M (m^3)}$$
 : Volume $\sqrt{\lambda} = \frac{V_S (m/s)}{V_M (m/s)}$: Speed

6.
$$C_{TM} = \frac{R_{TM}}{\frac{1}{2} \rho_{FW} \times V_M^2 \times S_M}$$

7.
$$C_{FM} = \frac{0.075}{(\log Rn_M - 2)^2}$$

8.
$$C_{TM} = C_{FM} + C_{RM}$$
$$\therefore C_{RM} = C_{TM} - C_{FM}$$

9.
$$C_{RS} = C_{RM}$$

$$10. R_n = \frac{V_M \times L_M}{v_{FW}}$$

$$11. \quad C_{\mathit{TS}} = C_{\mathit{FS}} + C_{\mathit{RS}}$$

12.
$$C_{FS} = \frac{0.075}{(\log Rn_{\scriptscriptstyle M} - 2)^2} \times \%$$
 roughness allowance

13.
$$R_{TS} = C_{TS} \times \frac{1}{2} \rho_{SW} \times V_S^2 \times S_S$$

- 14. $P_E = R_{TS} \times V_S$
- 15. $\eta_H = \frac{P_E}{P_T}$
- $16. \qquad \eta_H = \frac{1-t}{1-w}$
- 17. $\eta_D = \eta_H \times \eta_B$
- $18. \qquad \eta_D = \frac{P_E}{P_D}$
- $19. \qquad P_D = \frac{P_E}{\eta_D}$
- $20. \qquad \eta_S = \frac{P_D}{P_B}$
- $21. \quad \eta_T = \frac{P_E}{P_R}$