

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF INDUSTRIAL TECHNOLOGY

FINAL EXAMINATION JANUARY 2016 SEMESTER

COURSE CODE

: JCB 10503

COURSE TITLE

: ANALOG ELECTRONICS

PROGRAMME LEVEL

: BACHELOR

DATE

: 30 MAY 2016

TIME

: 9.00 AM - 12.00 PM

DURATION

: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. This question paper consists of ONE (1) section.
- 4. Answer FIVE (5) questions ONLY in Section A.
- 5. Please write your answers on the answer booklet provided.
- 6. Please answer all questions in English only.

THERE ARE 7 PAGES OF QUESTIONS EXCLUDING THIS PAGE.

SECTION A (Total: 100 marks)

INSTRUCTION: Answer FIVE (5) questions ONLY.

Please use the answer booklet provided.

Question 1

(a) With the aid of suitable diagram, discuss **TWO** (2) characteristics of conductor and insulator.

(6 marks)

(b) A 2V stabilized power supply is required to be produced from a 20V DC power supply input source. The maximum power rating, P_z of the zener diode is 2.3W. Using the following zener regulator circuit, solve:

Figure 1: Zener regulator circuit.

(i) The maximum current flowing through the zener diode.

(2 marks)

(ii) The minimum value of the series resistor, Rs.

(2 marks)

(iii) The load current I_L if a load resistor of $1k\Omega$ is connected across the zener diode.

(2 marks)

(iv) The zener current Iz at full load.

(c) Examine the input and output waveform of a rectifier circuit as shown in Figure 2. Classify the type of the rectifier. Then, design the required rectifier circuit using ideal diodes.

(6 marks)

Figure 2: Input and output waveform of rectifier circuit.

Question 2

(a) With the aid of suitable diagram, differentiate TWO (2) characteristics between common base and common emitter configurations.

(6 marks)

(b) From Figure 3, prove that the base current, $I_B = \frac{V_{CC} - V_{BE}}{R_B}$ and collector-to-emitter voltage, $V_{CE} = V_{CC} - I_C R_C$. Illustrate the input and output loop circuit.

(6 marks)

Figure 3: Fixed-bias circuit of a transistor.

- (c) Using the same fixed-bias circuit in part b and given the values of $V_{CC}=25V,\,R_B=205k\Omega,\,R_C=1.2k\Omega,\,\beta=100\,\text{ , determine};$
 - (i) Base current, IB.

(2 marks)

(ii) Collector current, Ic.

(2 marks)

(iii) Collector-to-emitter voltage, Vce.

(2 marks)

(iv) Base voltage, V_B.

Question 3

(a) Compare FOUR (4) characteristics of bipolar junction transistor (BJT) and filed-effect transistor (FET).

(4 marks)

(b) Given the value of maximum drain saturation current, $I_{DSS}=5\,\text{mA}$ and peak voltage, $V_P=-4\,V$. For the self-bias configuration of Figure 4, determine:

Figure 4: Self bias configuration circuit.

(i) Gate to source voltage, V_{GSQ}.

(8 marks)

(ii) Drain current, IDQ.

(1 mark)

(iii) Drain to source voltage, VDS.

(2 marks)

(iv) Source voltage, Vs.

(2 marks)

(v) Gate voltage, V_G.

(1 mark)

(vi) Drain voltage, V_D.

Question 4

(a) Explain FOUR (4) characteristics of a good amplifier.

(4 marks)

(b) Figure 5 illustrates the BJT amplifier circuit. Given the parameters of the amplifier is $\beta = 100$, $r_{bb'} = 20\Omega$, $r_{ce} = 20\Omega$ and $V_{BE} = 0.7V$. From the figure,

Figure 5: BJT amplifier circuit.

(i) Predict the types of BJT configuration for the amplifier circuit.

(2 marks)

(ii) Design the AC equivalent amplifier circuit using hybrid- π model.

(5 marks)

(iii) Examine emitter current, IE and re.

(5 marks)

(iv) Examine input and output impedances, Z_i and Z_o.

(2 marks)

(v) Examine voltage and current gain, A_v and A_i.

Question 5

(a) With the aid of suitable diagram, explain a concept of positive and negative feedbacks. (6 marks)

(b) Figure 6 shows an output of a periodic waveform of a 555 timer. To generate the periodic waveform,

Figure 6: An output of a periodic waveform of 555 timer.

(i) Design a circuit using the 555 timer. Use capacitor values of 0.01 μF . Draw and label the 555 timer.

(6 marks)

(ii) Modify the circuit in part (i) to give a duty cycle of 20% without changing the value of the frequency. Draw and label the modified 555 timer circuit. Then, interpret the operation of the circuit.

(8 marks)

Question 6

(a) Figure 7 illustrates a basic connection of operational amplifier (op-amp) circuit. By applying an ideal op-amp characteristics, design the op-amp AC equivalent circuit. Draw and label the equivalent circuit.

(6 marks)

Figure 7: Basic connection of operational amplifier circuit.

(b) Figure 8 shows a differential and common-mode operation for an operational amplifier. Solve:

Figure 8: Operational amplifier circuits.

(i) Differential input voltage, V_d . Draw the equivalent circuit for the differential operation.

(4 marks)

(ii) Common input voltage, V_c. Draw the equivalent circuit for the common-mode operation.

(4 marks)

(iii) Common-mode rejection ratio, CMRR.

(6 marks)

END OF EXAMINATION PAPER