

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF INFORMATION TECHNOLOGY

FINAL EXAMINATION

JANUARY 2016 SEMESTER

SUBJECT CODE

IED12303

SUBJECT TITLE

DIGITAL ELECTRONICS

LEVEL

DIPLOMA

TIME / DURATION

: (2 1/2 HOURS) 9.00 am - 11.30 am

DATE

24 MAY 2016

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections.
- 4. Answer all questions of Section A, and THREE (3) questions of Section B.
- 5. Please write your answers on the answer booklet provided.
- 6. Answer all questions in English.

THERE ARE 8 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

SECTION A (Total: 25 marks)

INSTRUCTION: Answer ALL questions Please use the answer booklet provided.

Question 1: Multiple Choice Questions

<u> </u>
-

- (A) HIGH or 1 (B) LOW or 1 (C) HIGH or 0
- (D) LOW or 0

- (A) a digital quantity (B) an analog quantity
- (C) a binary quantity (D) a natural quantity

- (A) A=0, B=0, C=0
- (B) A=0, B=1, C=1
- (C) A=1, B=1, C=0
- (D) A=1, B=1, C=

- (A) 1 kHz
- (B) 1 Hz
- (C) 100 Hz
- (D) 10 Hz

- (A) 0
- (B) 1
- (C) equal to the variable (D) the inverse of the variable

- (A) 100%
- (B) 200%
- (C) 50%
- (D) 33.3%

7. The Boolean expression
$$W\overline{XY}$$
 is _____

- (A) a sum term
- (B) a product term (C) a literal term
- (D) always 1

- (A) the AND gate
- (B) the OR gate
- (C) the flip-flop
- (D) the comparator

(A) AB = BA

- (B) B = B + B
- (C) (A + B) + C = A + (B + C)
- (D) B + A = A + B

10.	If an S-R latch has a 1 on the S input and a 0 on the R input and then the S input goes to 0, the latch will be				
	(A) Set (B) reset (C) invalid (D) clear				
11.	According to the distributive law,				
	(A) $B(A + C) = AB + BC$ (B) $(AB)C = ABC$				
	(C) $(B + 1)B = B$ (D) $A + AB = A$				
12.	The invalid state of an S-R latch occurs when				
	(A) S=1, R=0 (B) S=0, R=1				
	(C) S=1, R=1 (D) S=0, R=0				
13.	Which of the following rules states that if one input of an AND gate is always 1, the				
	output is equal to the other input?				
	(A) $B \cdot 1 = B$ (B) $B + B = B$ (C) $B \cdot B = B$ (D) $B + 1 = 1$				
14.	For a gated D latch, the Q output always equals the D input				
	(A) before the enable pulse (B) during the enable pulse				
	(C) Immediately after the enable pulse (D) answers (B) and (C)				
15.	The Boolean expression X = ABC + ACD represents				
	(A) an exclusive-OR (B) two ANDs ORed together				
	(C) two ORs ANDed together (D) a 4-input AND gate				
16	Like the letch the flip flep belongs to a cotogon, of legic circuits known as				
16.	Like the latch, the flip-flop belongs to a category of logic circuits known as				
	(A) monostable multivibrators (B) bistable multibrators				
	(C) astable multivibrators (D) one-shots				
17.	An example of a product-of-sums expression is				
	(A) $A(B+C) + A\overline{C}$ (B) $(A+B)(\overline{A}+B+\overline{C})$				
	(C) $\overline{A} + \overline{B} + BC$ (D) both answers (A) and (B)				
18.	The purpose of the clock input to a flip-flop is to				

(A) clear the device

- (B) set the device
- (C) always cause the output to change states
- (D) cause the output to assume a state dependent on the controlling (S-R, J-K, or D) inputs
- 19. An example of a standard SOP expression is ______.

(A)
$$\overrightarrow{ABCD} + \overrightarrow{AB} + \overrightarrow{A}$$

(B)
$$\overrightarrow{ABC} + \overrightarrow{ACD}$$

(C)
$$A\overline{B} + \overline{AB} + AB$$

(D)
$$\overline{AB} + \overline{ABC} + \overline{ABD}$$

- 20. A 4-variable Karnaugh map has _____
 - (A) eight cells
- (B) three cells
- (C) sixteen cells
- (D) four cells

- For an edge-triggered D flip-flop, _____.
 - (A) a change in the state of the flip-flop can occur only at a clock pulse edge
 - (B) the state that the flip-flop goes to depends on the D input
 - (C) the output follows the input at each clock pulse
 - (D) all of these answers
- 22. A feature that distinguishes the J-K flip-flop from the S-R flip-flop is the _____.
 - (A) toggle condition
- (B) preset input
- (C) type of clock
- (D) clear input
- 23. A flip-flop is in the toggle condition when _____.
 - (A) J=1, K=0
- (B) J=1, K=1
- (C) J=0, K=0
- (D) J=0, K=1
- 24. A J-K flip-flop with J=1 and K=1 has a 10 kHz clock input. The Q output is _____.
 - (A) constantly HIGH
- (B) constantly LOW
- (C) a 10 kHz square wave (D) a 5 kHz square wave
- 25. A 5-variable Karnaugh map has _
 - (A) 4 cells
- (B) eight cells
- (C) sixteen cells
- (D) none of these

SECTION B (Total: 75 marks)

INSTRUCTION: Answer any THREE (3) of the FOUR (4) questions Please use the answer booklet provided.

Question 2

- 1. A portion of a periodic digital waveform is shown in Figure 1. Determine the following:
 - a. period
 - b. frequency
 - c. duty cycle

Figure 1

(3 marks)

- 2. Convert the following decimal values to binary using Divided-by-Two method.
 - a. 95
 - b. 139

(6 marks)

- 3. Convert the following decimal values to binary using Sum-of-Weights method.
 - a. 96
 - b. 140

(6 marks)

4. Express decimal number +27 and -27 as 8-bit numbers in the sign-magnitude, 1's complement, and 2's complement forms.

(6 marks)

Convert the decimal number 127 to BCD code. Convert the BCD code 100100000011 to decimal.

(4 marks)

[Total: 25 marks]

Question 3

Table 1 is the truth table of a circuit with output X and four inputs A, B, C, and D.

Table 1.

	INP	UTS		OUTPUT
Α	В	С	D	X
0	0	0	0	0.
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0 .	1	0	0	1
0 .	1	0	1	0
0	1	1	0	0
0	. 1	1	1	0
1	0	0	0	1
1	0	0	1	
1	0	1	0	11-
1	0	1	1	
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	

a. Create Karnaugh map according Table 1.

(8 marks)

- b. Determine the simplest Boolean expression with the Karnaugh map in question (a).

 (9 marks)
- c. Implement the Boolean expression of question (B) with AND, OR, and NOT gates.

(8 marks)

[Total: 25 marks]

Question 4

A 4-bit binary counter is shown in Figure 2. Each flip-flop has a propagation delay for 10 nanoseconds (ns).

a. Is it a synchronous or asynchronous counter? Justify your answer.

(3 marks)

b. Is it a positive or negative edge-triggered counter?

(2 marks)

c. For clock CLK in Figure 2 applied to the first flip-flop, develop a timing diagram showing the Q output of each flip-flop.

(12 marks)

d. Determine the total propagation delay time from the triggering edge of a clock pulse until a corresponding change can occur in the state of Q₃.

(4 marks)

e. Determine the maximum clock frequency at which the counter can be operated.

(4 marks)

[Total: 25 marks]

Question 5

1. Using Boolean algebra and DeMorgan's theorems to simply following expressions.

a.
$$\overline{(A+B)}(\overline{C+D})(\overline{E+F})(\overline{G+H})$$

b.
$$(B+BC)(B+\overline{B}C)(B+D)$$

c.
$$A + B[AC + (B + \overline{C})D]$$

(9 marks)

2. Develop a truth table for each of the SOP (Sum of Products) expression:

a.
$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

b.
$$\overline{X} + Y\overline{Z} + WZ + X\overline{Y}Z$$

(8 marks)

3. For each truth table in Figure 3, derive a standard SOP (Sum-of-Products) expression.

.,Figure 3

(8 marks)

[Total: 25 marks]

END OF QUESTIONS