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Partially phosphorylated polyvinyl alcohol (PPVA) with aluminum phosphate (ALPO
4
) composites was synthesized by solution

casting technique to produce (PPVA)100−𝑦−(ALPO4)𝑦 (y= 0, 1, and 2).The surface structure and thermal properties of the filmswere
characterized using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The results showed
that the films have higher thermal stability with strong bonding between PPVA and ALPO

4
.

1. Introduction

Thedevelopment of new polymer-inorganic compositemate-
rials has garnered much interest over the years due to
their unique microstructures and physical and chemical
properties, which are markedly different from other mate-
rials. Polyvinyl alcohol (PVA) is one of the most important
polymeric materials in the industry as it is environmentally
friendly and of low cost. PVA is a hydrophilic polymer which
is frequently used as a matrix for a variety of inorganic parti-
cles. PVA provides a convenient route to prepare composites
whereby the inorganic particles are dispersed to a high degree
of uniformity and fineness. The addition of polyacids to
water-soluble PVA produces hydrogen bonded complexes. In
the case of strong phosphoric acids (PA), the reaction of PVA
may produce partial reactions to cyclic phosphate esters [1].
The remaining replaceable hydrogen of the cyclic phosphate
groups is ionized in water and the esterified polymer behaves
as a polyelectrolyte. Furthermore, there is physical rubbery
after esterification [2]. The phosphorylation of PVA with
phosphoric acid (PA) in producing partially phosphorylated

poly(vinyl alcohol) (PPVA) has attracted considerable inter-
est in the applications such as fire-retardant materials [3–8],
electrolyte [2, 9–12], membranes [13–15], metal chelating [16–
18], papermaking [19], sensors [20–23], synthetic bones/teeth
[17, 24], and nanoparticle/nanocomposite [25–28].

PPVA increases the amorphous structure of the poly-
mer by decreasing its glass transition temperature (𝑇

𝑔
)

and melting temperature (𝑇
𝑚
) [29]. PPVA complexes pos-

sess favourable properties such as good film forming, ion
exchange, conductivity, chemical resistance, and flammabil-
ity. Aluminum phosphate (ALPO

4
) is used industrially as a

high temperature dehydrating agent. In addition, ALPO
4
also

serves as a fluxing agent, binder, and catalyst in organic syn-
thesis. ALPO

4
exhibits a rich structural diversity in both

dense and crystalline microporous series framework.
In this paper, the synthesis of PPVA-ALPO

4
composite

films is described and their surface structures are exam-
ined.The thermal decomposition behaviour of PPVA-ALPO

4

composites films is also investigated and compared with the
decomposition characteristics of pure PVA.
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Table 1: Composition of PVA, PPVA and PPVA-ALPO4 films.

Sample code PVA (M) PA (M) PA/PVA (R) ALPO4 (%wt)
F0 0.15 — — —
F1 0.15 0.0172 0.1150 —
F2 0.15 0.0345 0.2299 —
F3 0.15 0.0517 0.3449 —
F4 0.15 0.0690 0.4599 —
F5 0.15 0.0862 0.5748 —
F3C1 0.15 0.0517 0.3449 1
F3C2 0.15 0.0517 0.3449 2

2. Materials and Methodology

PVA and PA/ortho-PA (85%) were supplied by R&M Chem-
icals while ALPO

4
was obtained from Sigma-Aldrich. The

first step in producing the polymer composites involved
modifying the PVA surface. The fabrication system consisted
of three-neck round-bottom flask, thermometer, heating
mantel, magnetic stirrer, and reflux vessel. Following this,
6.6 g of PVA, deionized water, and PA was added into the
three-neck round-bottom flask [28, 30]. The mixture was
dissolved by heating at 90∘C for 30 minutes and reflux was
carried out by continuous stirring for 1 hour; ALPO

4
was

then added to produce the composites and the solution was
maintained at 80–90∘C under continuous stirring for 1 hour.
The composition of various films is summarized in Table 1.

The complexation and chemical properties of all samples
were analyzed using Perkin Elmer System 2000 Fourier
transform infrared (FTIR) spectrometer with a scanning
range of 4000–400 cm−1. The thermal properties of the
samples were recorded using Mettler Toledo TGA/SDTA851
thermogravimetric analyzer with temperature range of 25–
1000∘C.

3. Results and Discussion

3.1. FTIR Analysis of PVA and PPVA Films. The FTIR
spectra for PVA/PPVA films (Samples F0–F5) are shown
in Figure 1. The spectrum for pure PVA (F0) shows ]O–H
(3288 cm−1), C–H (2925 cm−1), C=O (1722 cm−1), CH

2
(1423

and 1247 cm−1), C–O–H (1080 cm−1) [7, 30], and skeleton
(836 and 599 cm−1) [2] bands at the fingerprint region. The
peak at 1722 cm−1 corresponds to the C=O stretching mode
of the ester groups and occurs mostly in partially hydrolyzed
PVA [31]. The stretching vibrations of carbonyl and/or car-
boxyl groups in theminor acetate groups (−CO(O)CH) in the
PVA contribute to the existence of this peak [6]. In addition,
there are intrainter molecular hydrogen bonds between the
acetate groups in the PVA and adjacent OH group [32, 33].

It can be observed that the peaks for OH, P=O, and C–
O–P bands disappear at higher concentrations of PA. Even
though the intensity of the OH peak decreases abruptly
upon the addition of PA, this intensity increases with an
increase of PA due to the absorption of moisture by the film.
The OH peak then broadens which indicates the interaction
between PVA and PA [31] due to their phase separation and
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Figure 1: FTIR spectra of PVA and PPVA films.

dehydration at higher acid concentrations. Variations in the
P=O peak at 1329–1331 cm−1 for Samples F0–F2 are due to
hydrogen bonding and the P=O peak disappears completely
for Samples F3–F5. The C–OH peak disappears, whereas the
C–O peak appears [7, 8, 30] upon the addition of PA. The
disappearance of the C–OHpeak is attributed to the chemical
modifications of PVAby PA.TheC–O–P peak shifts to higher
wavenumber and attenuates due to hydrogen bonding. The
overlapping of vP–O(C) and VHPO

4

2− vibration groups [28,
30, 31] produces an intense peak.The C–O–P groups become
weaker at higher concentrations of PA due to the formation
of hydrogen bonds (VHPO

4

2−
).

The peak intrinsic to C–H, PO–H, C=C, and C–O–P
overlap with P–O, P–O, and O–P–O peaks is more apparent
with an increase in PA concentrations. The C–H peak shifts
to a higher wavenumber for Sample F3, whereas this peak
shifts to a lower wavenumber for Sample F4. However, the
peaks at 1634 and 1273 cm−1 which are not shifted correspond
to the bending mode of water molecules [31] as well as PVA
dehydration at higher concentration of PA [30]. The highest
wavenumber recorded for the shift in O–H peak is 2355 cm−1
(Sample F3), whereas the lowest wavenumber recorded for
this shift is 2338 cm−1 (Sample F4). It can be observed that
there is increase in the intensity of peaks for the P–OH band
[30] as well as in an overlapping of C–O–P and P–O, P–O,
and O–P–O bands at higher concentrations of PA, which is
attributed to the higher number of free PA molecules in the
films. These peaks shift to higher wavenumbers. The peaks
at 986–978 cm−1 belong to the P–O groups which originated
from (H

2
PO
4
)

− and VHPO
4

2− [28, 30, 31]. The emergence of
the P–O peak can be observed at 825 cm−1 for Sample F2,
whereas the VHPO

4

2− peak shifts to a lower wavenumber as
the PA concentration increases. However, the O–P–O peak at
477 cm−1 for the PPVA sample shifts to a higher wavenumber
with an increase in PA concentration. The deformation of
O–P–O as well as vibration modes in PO

4

3− can be clearly
observed [34].
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Figure 3: Intramolecular hydrogen bonding [33].

The maximum bonding number for PA to PVA occurs
at a mole ratio of 𝑅 = 0.33 (Figure 2(a)), which means that
the three functional groups of PVA can react with one unit
of PA. All protons are lost during the formation of C–O–P
bonds at this value of 𝑅. However, it is expected that there
will be free unreacted PVA groups for 𝑅 values less than 0.33,
due to insufficient free PA molecules. However, there will be
additional free PA functional groups for 𝑅 values above 0.33,
giving none of the free PVA functional groups which will
undergo a reaction. In this case, the free PA units will react
with available OH groups, forming hydrogen bonds which
will weaken and break up the C–O–P bond. An increase in
HPO
4

2− also weakens the C–O–P bonds. These bonds are
stabilized by losing a proton H+ and forming a C=C bond
which leads to dehydration, as observed in Sample F4. In
this case, the C–O–P band shifts to a higher wavenumber
(1122 cm−1) with an increase in intensity and a decrease peak
width. However, the C=C band for Sample F4 shifts to a lower
wavenumber with a decrease in intensity and an increase
in peak width due to dehydration, while crosslinking of
phosphorylation occurs in Samples F1–F3.

The nonlinear increase of PVA with PA molecules is
attributed to the acetate groups in the PVA as well as plasti-
cization effect of water on PVA [35]. However, the nonlinear
increase tends to level off when 𝑅 exceeds 0.33 or if the
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Figure 4: Intermolecular hydrogen bonding [33].

molar concentration of PA is 1.76M [7]. Figure 2(a) shows
the reaction between PVA and PA in order to produce
partially phosphorylated PVA. The partially phosphorylated
PVA consists of phosphorylated and unphosphorylated OH
units as well as acetate groups with intermolecular bonding
with adjacent OH. This agrees well with the FTIR results
presented in Figure 3, in which partially phosphorylated PVA
(Figure 2(a)) is produced for amole ratio of𝑅 ≤ 0.33whereas
dehydration of PVA (Figure 2(b)) is produced for amole ratio
of 𝑅 > 0.33 [30]. Dehydration of PVA produced conjugate
double bond of the phosphonate groups in PVA [7]. The
dehydration gel component increases, whereas the partially
phosphorylated component decreases with increasing PA
concentration due to the attenuation of C–O–P bond.

Figure 2(c) shows the C=O bond of partially hydrolyzed
PVA, whereby bonding occurs with the OH groups in water
[35].The acetate groups only appear in pure PVAfilm (Sample
F0), whereas the acetate groups have inter/intramolecular
bond with available hydrogen in the PPVA films. The
intramolecular and intermolecular hydrogen bonding is
shown in Figures 3 and 4, respectively.
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Figure 5: TGA curves of PVA powder (P), PVA (F0), and PPVA
(F1–F5) films.

3.2. TGA Analysis of PVA and PPVA Films. The TGA curves
of PVA powder (P) and PVA-PPVA films (Samples F0–F5)
are shown in Figure 5. The first weight loss is observed below
100∘C, which is due to the evaporation of moisture. The
first stage of degradation occurs between 130 and 270∘C,
whereby PVA begins to form a double bond as shown in
Figure 6 as well as it start to decompose by elimination of
water and acetate groups [35]. The partially hydrolyzed PVA
releases acetic acids at a lower temperatures and decomposes
at a higher temperature (330∘C) [36]. The second stage
of degradation occurs between 270 and 460∘C due to the
breakup of PVA backbones as well as degradation of acetate
groups [35]. This stage is of particular interest in evaluating
the thermal stability of the polymer. The third stage of
degradation occurs between 460 and 600∘C, whereby the
PVAdecomposes into impurities and other volatilematerials.
The PVA decomposes completely at 600∘C.

The thermal degradation of PPVA produces a condensed
phase mechanism which involves dehydration, crosslinking,
and char formation [3].TheTGA curves for all PPVA samples
are shown in Figure 5, and it can be observed that the PPVA
samples have higherweight residue compared to PVApowder
(P) and pure PVA film (F0). The degradation of complexed
PPVA films begins at temperature below 100∘C (first stage)
due to the evaporation of water [37]. The second stage of
degradation occurs between 120 and 190∘C due to the elim-
ination of water and volatiles products as well as formation
of diphosphate [38] and triphosphate [7] and breakup of
complexed PPVA [2].The second stage of degradation occurs
between 190 and 460∘C due to the spontaneous degrada-
tion of PPVA and breakup of PVA backbones [35]. The
decomposition of PVA begins at 460–700∘Cwhile the residue
oxidation occurs between 700 and 950∘C [8]. Char formation
occurs during the final stage of degradation and the unoxi-
dized residue remains at temperatures above 950∘C [8].

Spontaneous degradation of complexed PPVA films
occurs at 190∘C upon the addition of PA and the temperature
continues to decreases to 170∘C for the F5 film. Pyrolysis

occurs at 168∘C which is due to acid, whereas crosslinking
between the phosphate groups and PVA occurs below 168∘C
[6]. The total degradation of complexed PPVA occurs at
950∘C compared to pure PVA (600∘C). Major degradation of
PVA occurs during the second stage which constitutes 74%
of the weight loss. In contrast, major degradation complexed
PPVA occurs during the first stage with 32% weight loss.
This clearly proves that Sample F3 attains the maximum
bonding of PVA and PPVA. Below 90∘C, PVA reacts with PA
to form partially phosphorylated PVA known as polyvinyl
alcohol phosphate (PVA-P) and tends to produce polyvinyl
diphosphate (PVA-DP) at temperature above 90∘C [38]. PVA-
P is hydrophilic, whereas PVA-DP is hydrophobic. PVA-P can
be produced using a reaction time less than 3 hours, whereas
PVA-DP requires reaction times of more than 4 hours. PVA
cannot be dissolved completely at temperatures less than
90∘C. Consequently, the OH groups in PVA are not activated
due to hydrogen bonding, which leads to esterification of
PA to PVA at the surface of the PVA powder. PVA-P is
mainly produced in Sample F3 in which a high weight loss
can be observed due to water elimination and crosslinking
of PVA-P to PVA-DP. The formation of PVA-P (hydrophilic)
and PVA-DP (crosslink/hydrophobic) is influenced by the
amount of water, reaction temperature, and reaction time.
The phosphate groups that react with PVA in the autoclave
yield favourable properties at reaction temperature 120∘C
compared to 70–90∘C [26]. However, conjugated double
bonds are formed when the PVA is heated above 120∘C after
the polymer experiences rapid chain-stripping elimination of
water [25].The weight residue increases in complexed PPVA.
However the addition of PA reduces weight residue in the
first stage of PPVA degradation. The degradation process of
complexed PVA is given in Figure 7.

It can be seen that there is 14%weight residue due towater
elimination and breakup of complexes for the PVA film upon
the addition of 25mL of water. Even though the amount of
water decreases with an increase in PA concentration, the
total solution (mixture of PA and deionized water) remains
25mL which is the case for Sample F1. However, the weight
residue for Sample F2 increases as the amount of water added
decreases due to the formation of complexed PPVA which
absorbs more moisture. Maximum bonding between PA and
PVA occurs for Sample F3 with less water absorption. The
maximum weight residue occurs during the first stage of
degradation due to breakup of complexed PPVA. The PVA
experiences dehydration from high concentrations of PA for
Sample F4, whereby less water is absorbed.The plasticization
effects of PA on PVA tends to level off and phase separation
occurs at higher concentration of PA which is added into
Sample F5 [39]. It is also observed that Sample F5 is sticky,
wet, and oily.

3.3. FTIR Analysis of PPVA and PPVA-ALPO
4
Films. The

FTIR spectra for PPVA and PPVA-ALPO
4
composite films

are shown in Figure 8. The peak at 1088, 979, and 480 cm−1
for PPVA film (Sample F3) shifts to a lower wavenumber
of 1086, 977, and 475 cm−1 for the PPVA-ALPO

4
film (Sam-

ple F3C2) with a higher weight percent of ALPO
4
. The

peaks are assigned to C–O–P, P–OH, VHPO
4

2−, and O–P–O
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Figure 8: FTIR spectra of PPVA-ALPO
4
composite films.
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4
network.

bands, respectively, and indicate the interaction between
PPVA and ALPO

4
. A similar trend was also observed for

phosphate bonding interaction at C–O–P bands (1230, 1196,
and 1166 cm−1), overlapping of C–O–P and P–O bands
(930–970 cm−1), and O–P–O bands (603, 565 cm−1) with
aluminum content [34].The peak for the O–P–O band shows
a decrease in intensity and broadening of peak width with
an increase in ALPO

4
, which indicates a strong interaction

between PPVA and ALPO
4
by the formation of O–P–O–

ALPO
4
andC–O–P–ALPO

4
bonds, as shown in Figure 9.The

FTIR results are summarized in Table 2.
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Figure 10: TGA curves for PPVA film (Sample F3) and PPVA-
ALPO

4
composite films (Samples F3C1 and F3C2).

3.4. TGA Analysis of PPVA and PPVA-ALPO
4
Films. The

TGA curves for PPVA and composite PPVA-ALPO
4
compos-

ite films are presented in Figure 10. It can be observed that
the PPVA and PPVA-ALPO

4
films have higher weight residue

compared to the PPVA and PVA samples which is attributed
to the higher crosslinking productions of diphosphate and
triphosphate as well as reactions with ALPO

4
. This, in turn,

increases char formation, which remains unoxidized in the
waste. The thermal stability of the PPVA-ALPO

4
composite

film is improved compared to pure PVA and PPVA films
due to the interfacial bonding between ALPO

4
and PPVA.

The pure PVA film is stable up to 260∘C, whereas the PPVA
and PPVA-ALPO

4
samples are stable up to 190∘C. Thermal

decomposition occurs in two steps after water loss. Thermal
decomposition begins at 220∘C and ends at 492∘C, which
corresponds to the structure of the PVA. The first stage of
degradation occurs at a faster rate, whereas the second stage
of degradation is a slow process. The degradation of PPVA
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Table 2: Interpretation of PVA/PPVA and PPVA-ALPO4 FTIR spectra.

Band assignment and wavenumber (cm−1)

Sample OH C–H PO–H PO–H C=C C=O CH2 P=O C–O–P C–O–H C–O–P,
P–O P–O Sk O–P–O

F0 3288 2925 1722 1423,
1247 1080 836,

599
F1 3243 2913 2327 2116 1645 1417 1329 1087 986 825 477
F2 3252 2913 2328 2117 1645 1417 1331 1086 981 819 477
F3 3242 2917 2355 2117 1645 1422 1088 979 821 478
F4 3242 2915 2338 2116 1634 1424 1122 978 823 478
Intensity (%) I D D D D I I I D D D
Peak position L L H U U H H H L L U
Peak size S S B B B S S S B B B
F3C1 3243 2918 2353 2117 1645 1422 1088 979 821 480
F3C2 3242 2913 2328 2117 1645 1429 1085 977 820 478
Intensity I U U U D U D D D D
Peak position L L L U U H L L L L
Peak size S U U U B U B B B B
Sk = skeletal, intensity, I = increase, D = decrease, peak position, L = shift to lower wavelength, H = shift to higher wavelength, U = unshifted, peak size, B =
increase, S = decrease, U = unchanged.

and PPVA-ALPO
4
begins at a lower temperature compared to

PVA. The amount of weight residue for PPVA-ALPO
4
com-

posite film is higher compared to PPVA and PVA films.

4. Conclusion

In this study, polymer-inorganic composites have been syn-
thesized successfully by solution casting technique.The FTIR
results reveal that the maximum bonding between PVA and
PA occurs in the F3 film. The PPVA-ALPO

4
composite film

exhibits enhanced thermal properties compared to PPVA
and PVA films. Weight loss begins at a lower temperature in
PVA-ALPO

4
and PPVA compared to pure PVA. The highest

weight residue is obtained after thermal decomposition in air
compared to PPVA and PVA. The thermal stability of PPVA
and PPVA-ALPO

4
films is significantly higher than that for

pure PVA which proves a strong bonding between PPVA and
aluminum phosphate.
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